Исследование непрерывности функции в точке. Как исследовать функцию на непрерывность? Непрерывность элементарных функций

Лекция 4.

Непрерывность функций

1. Непрерывность функции в точке

Определение 1. Пусть функция y =f (x ) определена в точке х 0 и в некоторой окрестности этой точки. Функция y =f (x ) называется непрерывной в точке х 0 , если существует предел функции в этой точке и он равен значению функции в этой точке, т.е.

Таким образом, условие непрерывности функции y =f (x ) в точке х 0 состоит в том, что:


Так как
, то равенство (32) можно записать в виде

(33)

Это означает, что при нахождении предела непрерывной функции f (x ) можно перейти к пределу под знаком функции, т.е. в функцию f (x ) вместо аргумента х подставить его предельное значение х 0 .

lim sin x =sin(lim x );

lim arctg x =arctg (lim x ); (34)

lim lоg x =lоg (lim x ).

Задание. Найти предел: 1) ; 2)
.

Дадим определение непрерывности функции, опираясь на понятия приращения аргумента и функции.

Т.к. условия и
одинаковы (рис.4), то равенство (32) принимает вид:

или
.

Определение 2. Функция y =f (x ) называется непрерывной в точке х 0 , если она определена в точке х 0 и её окрестности, и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Задание. Исследовать на непрерывность функцию y =2х 2 1.

Свойства функций, непрервных в точке

1. Если функции f (x ) и φ (x ) непрерывны в точке х 0 , то их сумма
, произведение
и частное
(при условии
) являются функциями, непрерывными в точке х 0 .

2. Если функция у =f (x ) непрерывна в точке х 0 и f (x 0)>0, то существует такая окрестность точки х 0 , в которой f (x )>0.

3. Если функция у =f (u ) непрерывна в точке u 0 , а функция u=φ (x ) непрерывна в точке u 0 =φ (x 0 ), то сложная функция y =f [φ (x )] непрерывна в точке х 0 .

2. Непрерывность функции в интервале и на отрезке

Функция y =f (x ) называется непрерывной в интервале (a ; b ), если она непрерывна в каждой точке этого интервала.

Функция y =f (x ) называется непрерывной на отрезке [a ; b ], если она непрерывна в интервале (a ; b ), и в точке х =а непрерывна справа (т.е. ), а в точке x =b непрерывна слева (т.е.
).

3. Точки разрыва функции и их классификация

Точки, в которых нарушается непрерывность функции, называются точками разрыва этой функции.

Если х =х 0  точка разрыва функции y =f (x ), то в ней не выполняется по крайней мере одно из условий первого определения непрерывности функции.

Пример.

1.
. 2.

3)
4)
.

▼Точка разрыва х 0 называется точкой разрыва первого рода функции y =f (x ), если в этой точке существуют конечные пределы функции слева и справа (односторонние пределы), т.е.
и
. При этом:


Величину |A 1 -A 2 | называют скачком функции в точке разрыва первого рода. ▲

▼Точка разрыва х 0 называется точкой разрыва второго рода функции y =f (x ), если по крайней мере один из односторонних пределов (слева или справа) не существует или равен бесконечности. ▲

Задание. Найти точки разрыва и выяснить их тип для функций:

1)
; 2)
.

4. Основные теоремы о непрерывных функциях

Теоремы о непрерывности функций следуют непосредственно из соответствующих теорем о пределах.

Теорема 1. Сумма, произведение и частное двух непрерывных функций есть функция непрерывная (для частного за исключением тех значений аргумента, в которых делитель не равен нулю).

Теорема 2. Пусть функции u =φ (x ) непрерывна в точке х 0 , а функция y =f (u ) непрерывна в точке u =φ (x 0 ). Тогда сложная функция f (φ (x )), состоящая из непрерывных функций, непрерывна в точке х 0 .

Теорема 3. Если функция y =f (x ) непрерывна и строго монотонна на [a ; b ] оси Ох , то обратная функция у =φ (x ) также непрерывна и монотонна на соответствующем отрезке [c ;d ] оси Оу.

Всякая элементарная функция непрерывна в каждой точке, в которой она определена.

5. Свойства функций, непрерывных на отрезке

Теорема Вейерштрасса. Если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Следствие. Если функция непрерывна на отрезке, то она ограничена на отрезке.

Теорема Больцано-Коши. Если функция y =f (x ) непрерывна на отрезке [a ; b ] и принимает на его концах неравные значения f (a )=A и f (b )=B ,
, то каково бы ни было число С , заключённое между А и В, найдётся точка такая, что f (c )=C .

Геометрически теорема очевидна. Для любого числа С , заключённого между А и В , найдётся точка с внутри этого отрезка такая, что f (С )=C . Прямая у =С пересечёт график функции по крайней мере в одной точке.

Следствие. Если функция y =f (x ) непрерывна на отрезке [a ; b ] и принимает на его концах значения разных знаков, то внутри отрезка [a ; b ] найдётся хотя бы одна точка с , в которой функция y =f (x ) обращается в нуль: f (c )=0.

Геометрический смысл теоремы: если график непрерывной функции переходит с одной стороны оси Ох на другую, то он пересекает ось Ох .

Определение. Пусть на некотором промежутке определена функция f(x) и x 0 – точка этого промежутка. Если , то f(x) называется непрерывной в точке x 0 .
Из определения следует, что о непрерывности можно говорить лишь по отношению к тем точкам, в которых f(x) определена (при определении предела функции такого условия не ставилось). Для непрерывных функций , то есть операции f и lim перестановочны. Соответственно двум определениям предела функции в точке можно дать два определения непрерывности – «на языке последовательностей» и «на языке неравенств» (на языке ε-δ). Предлагается это сделать самостоятельно.
Для практического использования иногда более удобно определение непрерывности на языке приращений.
Величина Δx=x-x 0 называется приращением аргумента, а Δy=f(x)-f(x 0) – приращением функции при переходе из точки x 0 в точку x.
Определение. Пусть f(x) определена в точке x 0 . Функция f(x) называется непрерывной в точке x 0 , если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть Δy→0 при Δx→0.

Пример №1 . Доказать, что функция y=sinx непрерывна при любом значении x .
Решение. Пусть x 0 – произвольная точка. Придавая ей приращение Δx, получим точку x=x 0 +Δx. Тогда Δy=f(x)-f(x 0) = sin(x 0 +Δx)-sin(x) = . Получаем .

Определение . Функция y=f(x) называется непрерывной в точке x 0 справа (слева), если
.
Функция, непрерывная во внутренней точке, будет одновременно непрерывной справа и слева. Справедливо и обратное утверждение: если функция непрерывна в точке слева и справа, то она будет непрерывной в этой точке. Однако функция может быть непрерывной только с одной стороны. Например, для , , f(1)=1, следовательно, эта функция непрерывна только слева (график этой функции см. выше в пункте 5.7.2).
Определение. Функция называется непрерывной на некотором промежутке, если она непрерывна в каждой точке этого промежутка.
В частности, если промежутком является отрезок , то на его концах подразумевается односторонняя непрерывность.

Свойства непрерывных функций

1. Все элементарные функции непрерывны в своей области определения.
2. Если f(x) и φ(x), заданные на некотором промежутке, непрерывны в точке x 0 этого промежутка, то в этой точке будут также непрерывны функции .
3. Если y=f(x) непрерывна в точке x 0 из X, а z=φ(y) непрерывна в соответствующей точке y 0 =f(x 0) из Y, то и сложная функция z=φ(f(x)) будет непрерывной в точке x 0 .

Разрывы функции и их классификация

Признаком непрерывности функции f(x) в точке x 0 служит равенство , которое подразумевает наличие трех условий:
1) f(x) определена в точке x 0 ;
2) ;
3) .
Если хотя бы одно из этих требований нарушено, то x 0 называют точкой разрыва функции. Другими словами, точкой разрыва называется точка, в которой эта функция не является непрерывной. Из определения точек разрыва следует, что точками разрыва функции являются:
а) точки, принадлежащие области определения функции, в которых f(x) теряет свойство непрерывности,
б) точки, не принадлежащие области определения f(x), которые являются смежными точками двух промежутков области определения функции.
Например, для функции точка x=0 есть точка разрыва, так как функция в этой точке не определена, а функция имеет разрыв в точке x=1, являющейся смежной для двух промежутков (-∞,1) и (1,∞) области определения f(x) и не существует.

Для точек разрыва принята следующая классификация.
1) Если в точке x 0 имеются конечные и , но f(x 0 +0)≠f(x 0 -0), то x 0 называется точкой разрыва первого рода , при этом называют скачком функции .

Пример 2. Рассмотрим функцию
Разрыв функции возможен только в точке x=2 (в остальных точках она непрерывна как всякий многочлен).
Найдем , . Так как односторонние пределы конечны, но не равны друг другу, то в точке x=2 функция имеет разрыв первого рода. Заметим, что , следовательно функция в этой точке непрерывна справа (рис. 2).
2) Точками разрыва второго рода называются точки, в которых хотя бы один из односторонних пределов равен ∞ или не существует.

Пример 3. Функция y=2 1/ x непрерывна для всех значений x, кроме x=0. Найдем односторонние пределы: , , следовательно x=0 – точка разрыва второго рода (рис. 3).
3) Точка x=x 0 называется точкой устранимого разрыва , если f(x 0 +0)=f(x 0 -0)≠f(x 0).
Разрыв «устраним» в том смысле, что достаточно изменить (доопределить или переопределить) значение функции в этой точке, положив , и функция станет непрерывной в точке x 0 .
Пример 4. Известно, что , причем этот предел не зависит от способа стремления x к нулю. Но функция в точке x=0 не определена. Если доопределим функцию, положив f(0)=1, то она окажется непрерывной в этой точке (в остальных точках она непрерывна как частное непрерывных функций sinx и x).
Пример 5. Исследовать на непрерывность функцию .
Решение. Функции y=x 3 и y=2x определены и непрерывны всюду, в том числе и в указанных промежутках. Исследуем точку стыка промежутков x=0:
, , . Получаем, что , откуда следует, что в точке x=0 функция непрерывна.
Определение. Функция, непрерывная на промежутке за исключением конечного числа точек разрыва первого рода или устранимого разрыва, называется кусочно-непрерывной на этом промежутке.

Примеры разрывных функций

Пример 1. Функция определена и непрерывна на (-∞,+∞) за исключением точки x=2. Определим тип разрыва. Поскольку и , то в точке x=2 разрыв второго рода (рис. 6).
Пример 2. Функция определена и непрерывна при всех x, кроме x=0, где знаменатель равен нулю. Найдем односторонние пределы в точке x=0:
Односторонние пределы конечны и различны, следовательно, x=0 – точка разрыва первого рода (рис. 7).
Пример 3. Установить, в каких точках и какого рода разрывы имеет функция
Эта функция определена на [-2,2]. Так как x 2 и 1/x непрерывны соответственно в промежутках [-2,0] и , то разрыв может быть только на стыке промежутков, то есть в точке x=0. Поскольку , то x=0 является точкой разрыва второго рода.

Пример 4. Можно ли устранить разрывы функций:
а) в точке x=2;
б) в точке x=2;
в) в точке x=1?
Решение. О примере а) сразу можно сказать, что разрыв f(x) в точке x=2 устранить невозможно, так как в этой точке бесконечные односторонние пределы (см. пример 1).
б) Функция g(x) хотя имеет конечные односторонние пределы в точке x=2

(,),


но они не совпадают, поэтому разрыв также устранить нельзя.
в) Функция φ(x) в точке разрыва x=1 имеет равные односторонние конечные пределы: . Следовательно, разрыв может быть устранен переопределением функции в точке x=1, если положить f(1)=1 вместо f(1)=2.

Пример №5 . Показать, что функция Дирихле

разрывна в каждой точке числовой оси.
Решение. Пусть x 0 – любая точка из (-∞,+∞). В любой ее окрестности найдутся как рациональные, так и иррациональные точки. Значит, в любой окрестности x 0 функция будет иметь значения, равные 0 и 1. В таком случае не может существовать предела функции в точке x 0 ни слева, ни справа, значит функция Дирихле в каждой точке числовой оси имеет разрывы второго рода.

Пример 6. Найти точки разрыва функции


и определить их тип.
Решение. Точками, подозрительными на разрыв, являются точки x 1 =2, x 2 =5, x 3 =3.
В точке x 1 =2 f(x) имеет разрыв второго рода, так как
.
Точка x 2 =5 является точкой непрерывности, так как значение функции в этой точке и в ее окрестности определяется второй строкой, а не первой: .
Исследуем точку x 3 =3: , , откуда следует, что x=3 – точка разрыва первого рода.

Для самостоятельного решения.
Исследовать функции на непрерывность и определить тип точек разрыва:
1) ; Ответ: x=-1 – точка устранимого разрыва;
2) ; Ответ: Разрыв второго рода в точке x=8;
3) ; Ответ: Разрыв первого рода при x=1;
4)
Ответ: В точке x 1 =-5 устранимый разрыв, в x 2 =1 – разрыв второго рода и в точке x 3 =0 - разрыв первого рода.
5) Как следует выбрать число A, чтобы функция

была бы непрерывной в точке x=0?
Ответ: A=2.
6) Можно ли подобрать число A так, чтобы функция

была бы непрерывной в точке x=2?
Ответ: нет.

Непрерывная функция представляет собой функцию без «скачков», то есть такую, для которой выполняется условие: малым изменениям аргумента следуют малые изменения соответствующих значений функции. График подобной функции представляет из себя плавную или непрерывную кривую.

Непрерывность в точке, предельной для некоторого множества, можно определить с помощью понятия предела, а именно: функция должна иметь в этой точке предел, который равен ее значению в предельной точке.

При нарушении этих условий в некоторой точке, говорят, что функция в данной точке терпит разрыв, то есть ее непрерывность нарушается. На языке пределов точку разрыва можно описать как несовпадение значения функции в разрывной точке с пределом функции (если он существует).

Точка разрыва может быть устранимой, для этого необходимо существование предела функции, но несовпадающего с его значением в заданной точке. В этом случае ее в этой точке можно «поправить», то есть доопределить до непрерывности.
Совсем иная картина складывается, если предела функции в заданной существует. Возможно два варианта точек разрыва:

  • первого рода - имеются и конечны оба из односторонних пределов, и значение одного из них или обоих не совпадают со значением функции в заданной точке;
  • второго рода, когда не существует один или оба из односторонних пределов или их значения бесконечны.

Свойства непрерывных функций

  • Функция, полученная в результат арифметических действий, а также суперпозиции непрерывных функций на их области определения также является непрерывной.
  • Если дана непрерывная функция, которая положительна в некоторой точке, то всегда можно найти достаточно малую ее окрестность, на которой она сохранит свой знак.
  • Аналогично, если ее значения в двух точках A и B равны, соответственно, a и b, причем a отлично от b, то для промежуточных точек она примет все значения из промежутка (a ; b). Отсюда можно сделать интересное заключение: если дать растянутой резинке сжаться так, чтобы она не провисала (оставалась прямолинейной), то одна из ее точек останется неподвижной. А геометрически это означает, что существует прямая, проходящая через любую промежуточную точку между A и B, которая пересекает график функции.

Отметим некоторые из непрерывных (на области их определения) элементарных функций:

  • постоянная;
  • рациональная;
  • тригонометрические.

Между двумя фундаментальными понятиями в математике - непрерывностью и дифференцируемостью - существует неразрывная связь. Достаточно только вспомнить, что для дифференцируемости функции необходимо, чтобы это была непрерывная функция.

Если же функция в некоторой точке дифференцируема, то там она непрерывна. Однако совсем не обязательно, чтобы и ее производная была непрерывной.

Функция, имеющая на некотором множестве непрерывную производную, принадлежит отдельному классу гладких функций. Иначе говоря, это - непрерывно дифференцируемая функция. Если же производная имеет ограниченное количество точек разрыва (только первого рода), то подобную функцию называют кусочно гладкой.

Еще одним важным понятием является равномерная непрерывность функции, то есть ее способность быть в любой точке своей области определения одинаково непрерывной. Таким образом, это свойство, которое рассматривается на множестве точек, а не в какой-либо отдельно взятой.

Если же зафиксировать точку, то получится не что иное, как определение непрерывности, то есть из наличия равномерной непрерывности вытекает, что перед нами непрерывная функция. Вообще говоря, обратное утверждение неверно. Однако согласно теореме Кантора, если функция непрерывна на компакте, то есть на замкнутом промежутке, то она на нем равномерно непрерывна.

Определение. Функция f(x), определенная в окрестности некоторой точки х 0 , называется непрерывной в точке х 0 , если предел функции и ее значение в этой точке равны, т.е.

Тот же факт можно записать иначе:

Определение. Если функция f(x) определена в некоторой окрестности точки х 0 , но не является непрерывной в самой точке х 0 , то она называется разрывной функцией, а точка х 0 – точкой разрыва.

Пример непрерывной функции:

y

0 x 0 - x 0 x 0 + x

Пример разрывной функции:

Определение. Функция f(x) называется непрерывной в точке х 0 , если для любого положительного числа >0 существует такое число >0, что для любых х, удовлетворяющих условию

верно неравенство
.

Определение. Функция f(x) называется непрерывной в точке х = х 0 , если приращение функции в точке х 0 является бесконечно малой величиной.

f(x) = f(x 0) + (x)

где (х) – бесконечно малая при хх 0 .

Свойства непрерывных функций.

1) Сумма, разность и произведение непрерывных в точке х 0 функций – есть функция, непрерывная в точке х 0 .

2) Частное двух непрерывных функций – есть непрерывная функция при условии, что g(x) не равна нулю в точке х 0 .

3) Суперпозиция непрерывных функций – есть непрерывная функция.

Это свойство может быть записано следующим образом:

Если u = f(x), v = g(x) – непрерывные функции в точке х = х 0 , то функция v = g(f(x)) – тоже непрерывнаяфункция в этой точке.

Справедливость приведенных выше свойств можно легко доказать, используя теоремы о пределах.

Непрерывность некоторых элементарных функций.

1) Функция f(x) = C, C = const – непрерывная функция на всей области определения.

2) Рациональная функция
непрерывна для всех значений х, кроме тех, при которых знаменатель обращается в ноль. Таким образом, функция этого вида непрерывна на всей области определения.

3) Тригонометрические функции sinиcosнепрерывны на своей области определения.

Докажем свойство 3 для функции y = sinx.

Запишем приращение функции y = sin(x + x) – sinx, или после преобразования:

Действительно, имеется предел произведения двух функций
и
. При этом функция косинус – ограниченная функция прих0
, а т.к.

предел функции синус
, то она является бесконечно малой прих0.

Таким образом, имеется произведение ограниченной функции на бесконечно малую, следовательно это произведение, т.е. функция у – бесконечно малая. В соответствии с рассмотренными выше определениями, функция у = sinx – непрерывная функция для любого значения х = х 0 из области определения, т.к. ее приращение в этой точке – бесконечно малая величина.

Точки разрыва и их классификация.

Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х 0 , за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х 0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.

Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.


, то функция называется непрерывной справа.

Если односторонний предел (см. выше)
, то функция называется непрерывной слева.

Определение. Точка х 0 называется точкой разрыва функции f(x), если f(x) не определена в точке х 0 или не является непрерывной в этой точке.

Определение. Точка х 0 называется точкой разрыва 1- го рода , если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х 0 , достаточно того, что она определена слева и справа от нее.

Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже.

Определение. Точка х 0 называется точкой разрыва 2 – го рода , если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.

Непрерывность функции на интервале и на отрезке.

Определение. Функция f(x) называется непрерывной на интервале (отрезке) , если она непрерывна в любой точке интервала (отрезка).

При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала.

Свойства функций, непрерывных на отрезке.

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке выполняется условие –M  f(x)  M.

Доказательство этого свойства основано на том, что функция, непрерывная в точке х 0 , ограничена в некоторой ее окрестности, а если разбивать отрезок на бесконечное количество отрезков, которые “стягиваются” к точке х 0 , то образуется некоторая окрестность точки х 0 .

Свойство 2: Функция, непрерывная на отрезке , принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения х 1 и х 2 , что f(x 1) = m, f(x 2) = M, причем

m  f(x)  M

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – f(x) = sinx).

Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.

Свойство 3: (Вторая теорема Больцано – Коши). Функция, непрерывная на отрезке , принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция f(x) непрерывна в точке х = х 0 , то существует некоторая окрестность точки х 0 , в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x)- непрерывная на отрезке и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0.

Т.е. если sign(f(a))  sign(f(b)), то  х 0: f(x 0) = 0.

Пример.


в точке х = -1 функция непрерывна в точке х = 1 точка разрыва 1 – го рода

у

Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть.


в точке х = 0 функция непрерывна в точке х = 1 точка разрыва 1 – го рода

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Непрерывность функций одной переменной»

студентами бухгалтерского факультета заочной формы получения

образования (НИСПО)

Горки, 2013

Непрерывность функций одной переменной

    Односторонние пределы

Пусть функция
определена на множестве
. Введём понятие односторонних пределов функции при
. Будем рассматривать такие значения х , что
. Это означает, что
, оставаясь всё время слева от
при
то он называется левым пределом этой функции в точке (или при
) и обозначается

.

Пусть теперь
, оставаясь всё время справа от , т.е. оставаясь больше . Если при этом существует предел функции
, то он называется правым пределом этой функции в точке и обозначается

.

Левый и правый пределы называются односторонними пределами функции в точке.

Если существуют односторонние пределы функции в точке и они равны между собой, то функция имеет тот же предел в этой точке :



.

Если односторонние пределы функции в точке существуют, но не равны между собой, то предел функции в этой точке не существует .

    Непрерывность функции в точке

Пусть функция
определена на некотором множестве D . Пусть независимая переменная х переходит от одного своего (начального) значения
к другому (конечному) значению . Разность конечного и начального значений называется приращением величины х и обозначается
. Приращение может быть как положительным, так и отрицательным. В первом случае величина х при переходе от к х увеличивается, а во втором случае - уменьшается.

Если независимая переменная х получает некоторое приращение
, то функция
получает приращение
. Так как
, то .

Приращением функции
в точке называется разность , где
– приращение независимой переменной.

Можно дать несколько определений непрерывности функции в точке.



Функция называется непрерывной в интервале , если она непрерывна в каждой точке этого интервала. Геометрически непрерывность функции
в замкнутом интервале означает, что график функции представляет собой сплошную линию без разрывов.

Непрерывные на отрезке функции обладают важными свойствами, которые выражаются следующими утверждениями.

Если функция
непрерывна на отрезке [a , b ], то она ограничена на этом отрезке.

Если функция
непрерывна на отрезке [a , b ], то она достигает на этом отрезке своего наименьшего и наибольшего значений.

Если функция
непрерывна на отрезке [a , b ] и
, то каким бы ни было число С , заключённое между числами А и В , найдётся точка
, что
.

Из этого утверждения следует, что если функция
непрерывна на [a , b ] и на концах этого отрезка принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка c , в которой функция обращается в нуль.

Справедливо следующее утверждение: если над непрерывными функциями производить арифметические действия, то в результате получается непрерывная функци я.

Пример 1 .

в точке
.

Решение . Значение функции при
есть
. Вычислим односторонние пределы функции в точке
:

Так как односторонние пределы при
равны между собой и равны значению функции в этой точке, то данная функция непрерывна в точке
.

3. Непрерывность элементарных функций

Рассмотрим функцию
. Эта постоянная функция непрерывна в любой точке , так как
.

Функция
также непрерывна в каждой точке
, так как
. Так как
, то на основании приведённого утверждения об арифметических операциях над непрерывными функциями
будет непрерывной. Непрерывными будут такжен функции
.

Аналогично можно показать непрерывность остальных элементарных функций.

Таким образом, любая элементарная функция непрерывна в своей области определения, т.е. область определения элементарной функции совпадает с областью её непрерывности.

    Непрерывность сложной и обратной функций

Пусть функция
непрерывна в точке , а функция
непрерывна в точке
. Тогда сложная функция
непрерывна в точке . Это означает, что если сложная функция составлена из непрерывных функций, то она также будет непрерывной, т.е. непрерывная функция от непрерывной функции есть функция непрерывная . Это определение распространяется на конечное число непрерывных функций.

Из этого определения следует, что под знаком непрерывной функции можно переходить к пределу:

Это означает, что если функция непрерывна, то знак предела и знак функции можно поменять местами.

Пусть функция
a , b ]. Тогда обратная ей функция
определена, строго монотонна и непрерывна на отрезке [A , B ], где
.

    Точки разрыва и их классификаци я

Как уже известно, что если функция
определена на множестве D и в точке
выполняется условие
, то функция непрерывна в этой точке. Если же это условие непрерывности не выполняется, то в точке х 0 функция имеет разрыв.

Точка называется точкой разрыва первого рода функции
, если в этой точке функция имеет конечные односторонние пределы, не равные друг другу, т.е. . При этом величина

называется скачком функции
в точке .

Точка называется точкой устранимого разрыва функции
, если односторонние пределы функции в этой точке равны друг другу и не равны значению функции в этой точке, т.е. В этом случае для устранения разрыва в точке нужно положить

Точка х 0 называется точкой разрыва второго рода функции
если хотя бы один из односторонних пределов
или
в этой точке либо не существует, либо равен бесконечности.

Пример 2 . Исследовать на непрерывность функцию

.

Решение . Функция определена и непрерывна на всей числовой прямой, за исключением точки
. В этой точке функция имеет разрыв. Найдём односторонние пределы функции в точке
:

Так как в точке
односторонние пределы равны между собой, а функция в этой точке не определена, то точка
является точкой устранимого разрыва. Чтобы устранить разрыв в этой точке, необходимо доопределить функцию, положив
.

Пример 3 . Исследовать на непрерывность функцию

.

Решение . Функция определена и непрерывна на всём множестве действительных чисел, кроме
. В этой точке функция имеет разрыв. Найдём односторонние пределы функции при
:

.

Так как данная функция в точке
имеет конечные односторонние пределы, не равные друг другу, то эта точка является точкой разрыва первого рода. Скачок функции в точке
равен .

Вопросы для самоконтроля знаний

    Что называется приращением аргумента и приращением функции?

    Что называется левосторонним (левым) пределом функции?

    Что называется правосторонним (правым) пределом функции?

    Какая функция называется непрерывной в точке, в интервале?

    Какая точка называется точкой разрыва функции?

    Какая точка называется точкой разрыва первого рода?

    Какая точка называется точкой разрыва второго рода?

    Какая точка называется точкой устранимого разрыва?

Задания для самостоятельной работы

Исследовать функции на непрерывность:


в точке
.