Критерий наличия общих корней у пары полиномов. Определение корня многочлена

РЕФЕРАТ

Корни многочлена. Теорема Безу

Выполнили:

Студенты 1 курса группы ИМ-11

Очного отделения

Шабунин Дмитрий Олегович

Зорин Александр Сергеевич

Проверила:

Бобылева Оксана Владимировна

подпись___________________


Введение……………………………………………………………………………...3

1.Многочлены………………………………………………………………………..3

1.1.Определение многочлена………………………………………………………3

1.2.Определение корня многочлена……………………………………………….4

1.3.Схема Горнера………………………………………………………………….5

1.4.Нахождение корней по схеме Горнера. Виды корней……………………….7

2. Этьен Безу. Биография. Теорема Безу. Следствия из теоремы……………….13

2.1. Этьен Безу. Биогафия………………………………………………………...13

2.2. Теорема Безу………………………………………………………………….13

2.3 Следствия из теоремы Безу…………………………………………………..14

2.4. Примеры использования теоремы…………………………………………..14

Заключение………………………………………………………………………….16

Список используемых источников………………………………………………..17


ВВЕДЕНИЕ

Тема данного реферата: «Корни многочлена. Теорема Безу».

В нем мы хотим рассмотреть, что такое многочлен, что является корнем многочлена, а также рассказать про схему Горнера и теорему Безу.

В первой части мы разберем понятие многочлена, его корней и их виды и про схему Горнера. Во второй про теорему Безу.

Данная тема довольно актуальна, поскольку теорема Безу является одной из базовых теорем алгебры.

Многочлены

Понятие многочлена

Многочлен (полином) от одной переменной x – это выражение вида

где x – переменная, – коэффициенты из некоторого числового поля, n – целое неотрицательное число, а нулевое- свободный член. Отдельные слагаемые вида ……, k=0,1, …,n называются членами многочлена.

Также многочлен называют «полиномом», этот термин происходит от греческих слов «πολι» - много и «νομχ» - член.



2 члена называются подобными , если их степени равны. При этом подобные между собой члены можно преобразовать в один, т.е. привести подобные члены.

Степенью многочлена называют наибольшую среди степеней многочлена, при этом многочлен f(x)- не тождественный нуль. Обозначается эта степень deg(f).

Например:

Многочлен четвертой степени (старшая степень равна четырем);

- многочлен второй степени или квадратный (старшая степень равна двум).

При этом тождественный нуль степени не имеет.

Предполагается, что коэффициенты многочлена принадлежат определенному полю (полю действительных, рациональных, комплексных чисел). Так, если выполнять над многочленом операции сложения, умножения или вычитания при помощи сочетательного, переместительного и распределительных законов, мы получаем снова многочлен.

Из вышесказанного следует, что совокупность всех многочленов с коэффициентами из данного поля Р образует кольцо Р - кольцо многочленов над данным полем, это кольцо не имеет делителей нуля, т.е. произведение многочленов, не равных нулю, не может дать нуль.

Определение корня многочлена

Элемент кольца Р называется корнем многочлена f(x) Р , если f( )= 0. Другими словами, число является корнем многочлена f(x), если в выражение

мы подставим , тогда получим

Таким образом, при подстановке вместо число получается верное выражение. Это означает, что число является корнем равенства f(x)=0.

Поэтому корень многочлена f(x) и корень соответствующего уравнения f(x)=0 по сути одно и то же.

К примеру, найдём корень многочлена f(x)=3 -10+3

Данное выражение является квадратным поэтому для нахождения корня многочлена нам необходимо решить следующее уравнение

3 -10х+3=0.

Для этого необходимо рассмотреть алгоритм решения квадратных уравнений.

2 Схема Горнера

3 Функции произвольного вида

4 Нахождение корней полиномов

Список используемых информационных источников

1 Нахождение корней уравнений (Equation Section 1)

Одним из наиболее распространенных методов поиска корней уравнений является метод Ньютона и его модификации. Пусть требуется решить уравнение

. Будем считать, что x является решением уравнения. Разложим функцию f(x) в ряд в точке x0 близкой к точке x и ограничимся только первыми двумя членами разложения.

Поскольку x – корень уравнения, то

. Следовательно,

Таким образом, если нам известно приближенное значение корня уравнения, то полученное уравнение позволяет его уточнить. Понятно, что процесс уточнения можно повторять многократно, до тех пор, пока значение функции не будут отличаться от нуля на величину меньшую, чем заданная точность поиска. Очередное k-е приближение находится по формуле

Ограничившись в разложении только первыми двумя членами, мы фактически заменили функцию f(x) на прямую линию, касательную в точке x0, поэтому метод Ньютона еще называют методом касательных. Далеко не всегда бывает удобно находить аналитическое выражение для производной функции. Однако, в этом и нет особой необходимости: поскольку на каждом шаге мы получаем приближенное значение корня, можно для его вычисления использовать приближенное значение производной.

В качестве малой величины

можно взять, например, заданную точность вычислений , тогда расчетная формула примет вид (1.1)

С другой стороны, для вычисления производной можно воспользоваться значениями функции, полученными на двух предыдущих шагах,

(1.2)

В таком виде метод называется методом секущих (secantmethod). При этом, однако, возникает проблема с вычислением первого приближения. Обычно полагают, что

, то есть первый шаг вычислений проводится с использованием формулы (1.1), а все последующие – с использованием формулы (1.2). Именно эта вычислительная схема реализована в пакете Mathcad. Используя метод секущих, мы не можем гарантировать, что корень находится между двумя последними приближениями. Можно, однако, для вычисления очередного приближения использовать границы интервала, на котором функция меняет знак. Такой метод называется методом хорд (falsepositionmethod).

Идея метода секущих развивается в методе Мюллера. Однако в этом методе для нахождения очередного приближения используются три предыдущие точки. Иными словами, метод использует не линейную, а квадратичную интерполяцию функции. Расчетные формулы метода следующие :

Знак перед корнем выбирается так, чтобы абсолютное значение знаменателя было максимальным.

Поскольку поиск корня заканчивается, когда выполнится условие

, то возможно появление ложных корней. Например, для уравнения ложный корень появится в том случае, если точность поиска задана меньше, чем 0,0001. Увеличивая точность поиска, можно избавиться от ложных корней. Однако не для всех уравнений такой подход работает. Например, для уравнения , которое, очевидно, не имеет действительных корней, для любой, сколь угодно малой точности найдется значение x, удовлетворяющее критерию окончания поиска. Приведенные примеры показывают, что к результатам компьютерных вычислений всегда нужно относиться критически, анализировать их на правдоподобность. Чтобы избежать "подводных камней" при использовании любого стандартного пакета, реализующего численные методы, нужно иметь хотя бы минимальное представление о том, какой именно численный метод реализован для решения той или иной задачи.

В том случае, когда известен интервал, на котором расположен корень, можно воспользоваться иными методами нахождения решения уравнения.

В методе Риддера (Ridder’smethod) вычисляют значение функции в середине интервала

. Затем ищут экспоненциальную функцию такую, что Затем применяют метод хорд, используя значения . Очередное значение вычисляют по формуле (1.5)

Метод Брента (Brentmethod) соединяет быстроту метода Риддера и гарантированную сходимость метода деления отрезка пополам. Метод использует обратную квадратичную интерполяцию, то есть ищет x как квадратичную функцию y. На каждом шаге проверяется локализация корня. Формулы метода достаточно громоздки и мы не будем их приводить.

Особые методы применяют для поиска корней полинома. В этом случае могут быть найдены все корни. После того как один из корней полинома найден, степень полинома может быть понижена, после чего поиск корня повторяется.

Метод Лобачевского, метод приближённого (численного) решения алгебраических уравнений, найденный независимо друг от друга бельгийским математиком Ж. Данделеном, русским математиком Н. И. Лобачевским (в 1834 в наиболее совершенной форме) и швейцарским математиком К. Греффе. Суть Л. м. состоит в построении уравнения f1(x) = 0, корни которого являются квадратами корней исходного уравнения f(x) = 0. Затем строят уравнение f2(x) = 0, корнями которого являются квадраты корней уравнения f1(x) = 0. Повторяя этот процесс несколько раз, получают уравнение, корни которого сильно разделены. В случае если все корни исходного уравнения действительны и различны по абсолютной величине, имеются простые вычислительные схемы Л. м. для нахождения приближённых значений корней. В случае равных по абсолютной величине корней, а также комплексных корней вычислительные схемы Л. м. очень сложны.

Метод Лагерра (Laguerre’smethod) основывается на следующих соотношениях для полиномов

Знак перед корнем выбирают с таким расчетом, чтобы получить наибольшее значение знаменателя.

Еще один метод, который применяют для поиска корней полиномов, – метод сопровождающей матрицы (companionmatrix). Можно доказать, что матрица

называемая сопровождающей матрицей для полинома

, имеет собственные значения равные корням полинома. Напомним, что собственными значениями матрицы называются такие числа , для которых выполняется равенство или . Существуют весьма эффективные методы поиска собственных значений, о некоторых из них мы будем говорить далее. Таким образом, задачу поиска корней полинома можно свести к задаче поиска собственных значений сопровождающей матрицы.

2 Схема Горнера

Вычисление по схеме Горнера оказывается более эффективным, причем оно не очень усложняется. Эта схема основывается на следующем представлении многочлена:

p(x) = ((... ((anx + an-1)x + an-2)x + ... + a2)x + a1)x + a0.

Займемся общим многочленом вида:

p(x) = anxn + an-1xn-1 + an-2xn-2 + ... + a2x2 + a1x + a0.

Мы будем предполагать, что все коэффициенты an, ..., a0 известны, постоянны и записаны в массив. Это означает, что единственным входным данным для вычисления многочлена служит значение x, а результатом программы должно быть значение многочлена в точке x.

Схема деления углом

Деление многочленов

Деление с остатком . Теорема . Если P(x) и S(x) 0 - два многочлена, то существует и притом единственная пара многочленов Q(x) и R(x), которая удовлетворяет соотношениям: 1) , 2) либо степень R(x) меньше или равна степени S(x), либо R(x) = 0.

Q(x) - называется частным, а R(x) - остатком.

Пример 1 . , . Найти частное и остаток от деления многочлена P(x) на S(x).

Ответ : частное , остаток .

Пример 2 . Найти частное и остаток при делении на .

Ответ : частное равно ; остаток равен нулю.

Теорема . Многочлен P(x) делится на многочлен S(x) в том случае, если остаток при делении P(x) на S(x) равен нулю .

Из теоремы следует, чтобы выяснить, делится ли многочлен P(x) на S(x), можно выполнить деление углом и найти остаток. Если остаток равен нулю, то многочлен P(x) делится на многочлен S(x).

Пример 3 . Установить делится ли многочлен

на многочлен ?

Разделим "уголком" многочлен P(x) на S(x). В результате мы получим, что частное равно , а остаток равен нулю. Значит многочлен P(x) делится на многочлен S(x).

Пусть c - некоторое действительное число (в общем случае, комплексное число). Значением многочлена P(x) при x = c называется число, которое получается, при подстановке вместо x в данный многочлен и выполнении действий.

Если , тогда значение этого многочлена при x = c обозначается через P(c): .

Пример 1 . Значение многочлена P(x) = при x = 2 равно:

при x = 0, P(0) = -5; при x = 1, P(1) = 3 - 2 + 4 - 5 = 0.

Таким образом, при x = 0 значение многочлена равно свободному члену:

при x = 1 значение многочлена равно сумме его коэффициентов:

Определение . Если при значение многочлена равно нулю, , тогда называется корнем многочлена P(x).

Пример 1 . Задан многочлен . При x = 2 значение этого многочлена равно нулю, , значит x = 2 является корнем многочлена S(x).

Тот факт, что при x = 1 значение многочлена равно сумме его коэффициентов используется в обратном порядке: если сумма коэффициентов многочлена равна нулю, тогда x = 1 - корень этого многочлена.

Определение . Если стоит задача найти все значения переменной x, при которых многочлен f(x) равен нулю, то говорят, что надо решить уравнение f(x) = 0.

Выделим особенно, что решить уравнение - значит найти все его корни.

Таким образом, алгебраическим уравнением называется уравнение f(x) = 0, где f(x) - некоторый многочлен. Если f(x) - многочлен n-й степени, то уравнение называется алгебраическим уравнением n-й степени .



При решении алгебраических уравнений полезна следующая теорема (называемая теоремой Безу).

Теорема 1 . Остаток от деления многочлена f(x) на x - a равен f(a) (т. е. равен значению этого многочлена при x = a).

Доказательство

Произведём деление с остатком многочлена f(x) на x - a:

где остаток r(x), если он не равен нулю, является многочленом, степень которого меньше степени делителя x - a, т. е. равна нулю. Поэтому r(x) = r является числом :

Чтобы найти число r, положим в этом равенстве x = a. Тогда, получим f(a) = r, что и доказывает теорему.

Следствие . Если a - корень многочлена f(x), то этот многочлен делится на .

Пример 1 . Дан многочлен . Нетрудно видеть, что 1 - корень этого многочлена, в самом деле: , значит, по следствию из теоремы многочлен должен делиться на x - 1.

Разделим "уголком" многочлен на x - 1:

Остаток равен нулю, значит, многочлен делится на x - 1.

Теорема 2 . Если все коэффициенты многочлена

являются целыми числами, то всякий целый корень этого многочлена является делителем свободного члена .

Доказательство

Пусть c - целый корень многочлена f(x), т. е.

Так как число, стоящее в скобках, является целым (так как все коэффициенты целые, по условию), то делится на c.

Доказанная теорема значительно облегчает отыскание целых корней многочленов с целыми коэффициентами.

1 . Надо найти и выписать все делители свободного члена (положительные и отрицательные).

2 . Проверить (можно подстановкой), какие из них являются корнями данного многочлена.

3 . Если ни один делитель свободного члена не обращает многочлен в нуль, то этот многочлен целых корней не имеет.

Пример 1 . Решить уравнение .

1. Найдем делители свободного члена 12: .

2. Если уравнение имеет целые корни, то они находятся среди этих делителей, проверим это. Многочлен в левой части уравнения обозначим f(x).

f(1) = 24, значит 1 не является корнем уравнения;

f(-1) = -24, значит -1 не является корнем уравнения;

f(2) = 0, значит 2 является корнем уравнения.

3. По теореме Безу, многочлен f(x) делится на x - 2. Производя деление "уголком", находим: .

Для нахождения остальных корней нужно решить уравнение

Снова повторяем предыдущий процесс.

1. Выписываем делители свободного члена 6: .

2. Проверяем их. Числа 1 и -1 уже проверялись. Испытаем другие делители, подставляя их один за другим в многочлен .

g(2) = -40, значит 2 не является корнем многочлена g(x);

g(-2) = 12, -2 не является корнем;

g(3) = -48, 3 не является корнем;

g(-3) = 0, значит -3 является корнем многочлена g(x).

По теореме Безу, он делится на x + 3. В результате деления получаем:

Чтобы найти другие корни, если они существуют, решим квадратное уравнение .

Таким образом, исходное уравнение четвёртой степени имеет четыре корня.

Ответ : , , , .

Замечание . Порой бывает нелегко проверять предполагаемые корни многочлена или вычислять его значение, особенно, если многочлен высокой степени и проверяемые числа большие.

Для облегчения этого процесса существует схема Горнера.

Если число с является корнем многочлена f (x), этот многочлен, как известно, делится на х-с. Может случиться, что f (x) делится и на какую-то степень многочлена х-с, т.е. на (х-с) k, k>1. В этом случае с называют кратным корнем. Сформулируем определение более четко.

Число с называется корнем кратности k (k-кратным корнем) многочлена f (x), если многочлен делится на (х-с) k, k>1 (k - натуральное число), но не делится на (х-с) k+1. Если k=1, то с называют простым корнем, а если k>1, - кратным корнем многочлена f (x).

В дальнейшем при определении кратности корней нам будет полезно следующее предложение.

Если многочлен f (x) представим в виде f (x) = (x-c) mg (x), m - натуральное число, то он делится на (х-с) m+1 тогда и только тогда, когда g (x) делится на х-с. В самом деле, если g (x) делится на х-с, т.е. g (x) = (x-c) s (x), то f (x) = (x-c) m+1s (x), а значит, f (x) делится на (х-с) m+1.

Обратно, если f (x) делится на (х-с) m+1, то f (x) = (x-c) m+1s (x). Тогда (x-c) mg (x) = (x-c) m+1s (x) и после сокращения на (х-с) m получим g (x) = (x-c) s (x). Отсюда следует, что g (x) делится на х-с.

А сейчас вернемся к понятию кратности корня. Выясним, например, является ли число 2 корнем многочлена f (x) =x5-5x4+3x3+22x2-44x+24, и если да, найдем его кратность. Чтобы ответить на первый вопрос, проверим с помощью схемы Горнера, делится ли f (x) на х-2. имеем:

Таблица 4

Получили, что g (x) делится на х-2 и g (x) = (x-2) (x3-x2-5x+6). Тогда f (x) = (x-2) 2 (x3-x2-5x+6).

Итак, f (x) делится на (х-2) 2, теперь нужно выяснить, делится ли f (x) на (x-2) 3.

Для этого проверим, делится ли h (x) =x3-x2-5x+6 на х-2:

Таблица 6

Находим, что остаток при делении s (x) на х-2 равен 3, т.е. s (x) не делится на х-2. Значит, f (x) не делится на (х-2) 4.

Таким образом, f (x) делится на (х-2) 3, но не делится на (х-2) 4. Следовательно, число 2 является корнем кратности 3 многочлена f (x).

Обычно проверку корня на кратность выполняют в одной таблице. Для данного примера эта таблица имеет следующий вид:

Таблица 8

Другими словами, по схеме Горнера деление многочлена f (x) на х-2, во второй строке мы получим коэффициенты многочлена g (x). Затем эту вторую строку считаем первой строкой новой системы Горнера и выполняем деление g (x) на х-2 и т.д. продолжаем вычисления до тех нор, пока не получим остаток, отличный от нуля. В этом случае кратность корня равна числу полученных нулевых остатков. В строке, содержащей последний ненулевой остаток, находится и коэффициенты частного при делении f (x) на (x-2) 3. Теперь, используя только что предложенную схему проверки корня на кратность, решим следующую задачу. При каких a и b многочлен f (x) =x4+2x3+ax2+ (a+b) x+2 имеет число - 2 корнем кратности 2?

Так как кратность корня - 2 должна быть равна 2, то, выполняя деление на х+2 по предложенной схеме, мы должны два раза получить остаток 0, а в третий раз - остаток, отличный от нуля. Имеем:

Таблица 9

Таким образом, число - 2 является корнем кратности 2 исходного многочлена тогда и только тогда, когда

Отсюда получаем: a=-7/2, b=-5/2.

Свойства

где - (в общем случае комплексные) корни многочлена , возможно с повторениями, при этом если среди корней многочлена встречаются равные, то общее их значение называется кратным корнем .

Нахождение корней

Способ нахождения корней линейных и квадратичных многочленов, то есть способ решения линейных и квадратных уравнений, был известен ещё в древнем мире. Поиски формулы для точного решения общего уравнения третьей степени продолжались долгое время (следует упомянуть метод, предложенный Омаром Хайямом), пока не увенчались успехом в первой половине XVI века в трудах Сципиона дель Ферро , Никколо Тарталья и Джероламо Кардано . Формулы для корней квадратных и кубических уравнений позволили сравнительно легко получить формулы для корней уравнения четвертой степени .

То, что корни общего уравнения пятой степени и выше не выражаются при помощи рациональных функций и радикалов от коэффициентов было доказано норвежским математиком Нильсом Абелем в 1826 году . Это совсем не означает, что корни такого уравнения не могут быть найдены. Во-первых, в частных случаях, при некоторых комбинациях коэффициентов корни уравнения при некоторой изобретательности могут быть определены. Во-вторых, существуют формулы для корней уравнений 5-й степени и выше, использующие, однако, специальные функции - эллиптические или гипергеометрические (см., к примеру, корень Бринга).

В случае, если все коэффициенты многочлена рациональны, то нахождение его корней приводится к нахождению корней многочлена с целыми коэффициентами. Для рациональных корней таких многочленов существуют алгоритмы нахождения перебором кандидатов с использованием схемы Горнера , причем при нахождении целых корней перебор может быть существенно уменьшен приемом чистки корней. Также в этом случае можно использовать полиномиальный LLL-алгоритм.

Для приблизительного нахождения (с любой требуемой точностью) вещественных корней многочлена с вещественными коэффициентами используются итерационные методы , например, метод секущих , метод бисекции , метод Ньютона . Количество вещественных корней многочлена на интервале может быть оценено при помощи теоремы Штурма .

См. также

Примечания


Wikimedia Foundation . 2010 .

  • Канализация
  • Словарь терминов вексиллологии

Смотреть что такое "Корень многочлена" в других словарях:

    Корень алгебраического уравнения

    Корень уравнения - Корень многочлена над полем k элемент, который после подстановки его вместо x обращает уравнение в тождество. Свойства Если c является корнем многочлена p(x … Википедия

    Корень Бринга - Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения должны быть пояснения. В алгебре корень Бринга или ультрарадикал это аналитическая функция, такая что для… … Википедия

    Корень (значения) - Корень: В Викисловаре есть статья «корень» Корень (в ботанике) вегетативный осевой подземный орган растения, обладающий сп … Википедия

    Корень (в математике) - Корень в математике, 1) К. степени n из числа а ≈ число х (обозначаемое), n я степень которого равна а (то есть xn = а). Действие нахождения К. называют извлечением корня. При а ¹ 0 существует n различных значений К. (вообще говоря,… …

    Корень - I Корень (radix) один из основных вегетативных органов листостебельных растений (за исключением мхов), служащий для прикрепления к субстрату, поглощения из него воды и питательных веществ, первичного превращения ряда поглощаемых веществ,… … Большая советская энциклопедия

    КОРЕНЬ - 1) К. степени n из числа a число n я степень х п к рого равна а. 2) К. алгебраического уравнения над полем К элемент к рый после подстановки его вместо хобращает уравнение в тождество. К. этого уравнения наз. также и К. многочлена Если сявляется… … Математическая энциклопедия

    Кратный корень - многочлена f (x) = a0xn + a1xn 1 +... + an, число с такое, что f (x) делится без остатка на вторую или более высокую степень двучлена (х с). При этом с называют корнем кратности, если f (x) делится на (х с) k, но не… … Большая советская энциклопедия

    Сопряжённый корень - Если задан некоторый неприводимый многочлен над кольцом и выбран некоторый его корень в расширении, то сопряженным корнем для данного корня многочлена называется любой корень многочлена … Википедия

    Квадратный корень из 2 - равен длине гипотенузы в прямоугольном треугольнике с длиной катетов 1. Квадратный корень из числа 2 положительное … Википедия