Рекорды веществ. Самое тяжелое вещество во вселенной

1. Самая чёрная материя, известная человеку
Что произойдёт, если наложить друг на друга края углеродных нанотрубок и чередовать слои из них? Получится материал, который поглощает 99.9% света, который попадает на него. Микроскопическая поверхность материала является неровной и шероховатой, которая преломляет свет и при этом является плохой отражающей поверхностью. После этого попробуйте использовать углеродные нанотрубки в качестве суперпроводников в определенном порядке, что делает их прекрасными поглотителями света, и у вас получится настоящая чёрная буря. Учёные всерьёз озадачены потенциальными вариантами применения этого вещества, так как, фактически, свет не «теряется», то вещество могло бы использоваться для улучшения оптических устройств, например, телескопов и даже использоваться для солнечных батарей, работающих почти со 100% эффективностью.
2. Самое горючее вещество
Множество вещей горит с поразительной скоростью, например, стирофом, напалм и это только начало. Но что, если бы было вещество, которое могло бы охватить огнём землю? С одной стороны это провокационный вопрос, но он был задан как отправная точка. Трифторид хлора имеет сомнительную славу как ужасно горючее вещество, при том, что нацисты полагали, что это вещество слишком опасно для работы. Когда люди, которые обсуждают геноцид, считают, что целью их жизни является не использовать что-либо, потому что это слишком смертельно, это поддерживает осторожное обращение с этими веществами. Говорят, что однажды пролилась тонна вещества и начался пожар, и выгорело 30,5 см бетона и метр песка с гравием, пока всё не утихло. К сожалению, нацисты оказались правы.
3. Самое ядовитое вещество
Скажите, что бы вы меньше всего хотели, что могло бы попасть на ваше лицо? Это вполне мог быть самый смертоносный яд, который по праву займёт 3 место среди основных экстремальных веществ. Такой яд, действительно отличается от того, что прожигает бетон, и от самой сильной кислоты в мире (которую скоро изобретут). Хотя и не совсем так, но вы все, без сомнений, слышали от медицинского сообщества о ботоксе, и благодаря ему прославился самый смертоносный яд. Ботокс использует ботулотоксин, порождаемый бактерией «клостридиум ботулинум», и она очень смертоносна, и её количества, равного крупинке соли, достаточно, чтобы убить человека весом в 200 фунтов (90,72 кг; прим. mixednews). На самом деле, учёные рассчитали, что достаточно распылить всего 4 кг этого вещества, чтобы убить всех людей на земле. Наверное, орёл бы поступил гораздо гуманнее с гремучей змеёй, чем этот яд с человеком.
4. Самое горячее вещество
Существует очень мало вещей в мире, известных человеку как нечто более горячее, чем внутренняя поверхность недавно разогретого в микроволновке Hot Pocket, но это вещество, кажется, побьёт и этот рекорд. Созданное столкновением атомов золота при почти световой скорости, вещество называют кварк-глюонным «супом», и оно достигает сумасшедших 4 триллионов градусов Цельсия, что почти в 250 000 раз горячее вещества внутри Солнца. Величина энергии, испускаемой при столкновении, была бы достаточной, чтобы расплавить протоны и нейтроны, что само по себе имеет такие особенности, о которых вы даже и не подозревали. Учёные говорят, что это вещество могло бы нам дать представление о том, на что было похоже рождение нашей Вселенной, поэтому стоит с пониманием отнестись к тому, что крошечные сверхновые не создаются ради забавы. Тем не менее, действительно хорошие новости состоят в том, что «суп» занимал одну триллионную сантиметра и длился в течение триллионной одной триллионной секунды.
5. Самая едкая кислота
Кислота - это ужасное вещество, одного из самых страшных монстров в кино наделили кислотной кровью, чтобы сделать его ещё более ужасным, чем просто машина для убийства («Чужой»), поэтому внутри нас укоренилось, что воздействие кислотой - это очень плохо. Если бы «чужих» наполнили фторидно-сурьмяной кислотой, то они бы не только провалились глубоко через пол, но и пары, испускаемые от их мёртвых тел убили бы всё вокруг них. Эта кислота в 21019 раз более сильная, чем серная кислота и может просочиться через стекло. И она может взорваться, если добавить воды. И во время её реакции выделяются ядовитые испарения, которые могут убить любого в помещении.
6. Самая взрывоопасная взрывчатка
На самом деле, это место делят в настоящий момент два компонента: октоген и гептанитрокубан. Гептанитрокубан главным образом существует в лабораториях, и аналогичен октогену, но имеет более плотную структуру кристаллов, что несёт в себе бо?льший потенциал разрушения. Октоген, с другой стороны, существует в достаточно больши?х количествах, что может угрожать физическому существованию. Он используется в твёрдом топливе для ракет, и даже для детонаторов ядерного оружия. И последнее является самым ужасным, так как несмотря на то, с какой лёгкостью это происходит в кино, начало расщепления/термоядерной реакции, которая приводит к ярким светящимся ядерным облакам, похожим на гриб, не является простой задачей, но октоген прекрасно с ней справляется.
7. Самое радиоактивное вещество
Говоря о радиации, стоит упомянуть о том, что светящиеся зелёные стержни «плутония», показанные в «Симпсонах» - это всего лишь выдумка. Если что-либо является радиоактивным, это вовсе не означает, что оно светится. Стоит об этом упомянуть, так как «полоний-210» настолько радиоактивен, что он светится голубым. Бывшего советского шпиона, Александра Литвиненко ввели в заблуждение, когда ему добавили в еду этого вещества, и вскоре после этого он умер от рака. Это не та вещь, с который вы захотите пошутить, свечение вызывается воздухом вокруг вещества, на который воздействует радиация, и, в самом деле, объекты вокруг могут нагреваться. Когда мы говорим «радиация», мы думаем, например, о ядерном реакторе либо взрыве, где действительно происходит реакция деления. Это только выделение ионизированных частиц, а не вышедшее из-под контроля расщепление атомов.
8. Самое тяжёлое вещество
Если вы думали, что самое тяжёлое вещество на Земле - это алмазы, это была хорошая, но неточная догадка. Это технически созданный алмазный наностержень. Это фактически совокупность из алмазов нано-масштаба, с наименьшей степенью сжатия и самое тяжёлое вещество, известное человеку. На самом деле его не существует, но что было бы весьма кстати, так как это означает, что когда-нибудь мы могли бы покрыть наши машины этим материалом и просто избавиться от нее, когда произойдёт столкновение с поездом (нереальное событие). Это вещество изобрели в Германии в 2005 году и, возможно, его будут использовать в той же самой степени, как и промышленные алмазы, исключая то обстоятельство, что новое вещество более устойчивое к износу, чем обычные алмазы.
9. Самое магнитное вещество
Если бы индуктор являлся небольшим чёрным куском, то это было бы то самое вещество. Вещество, разработанное в 2010 году из железа и азота, обладает магнитными способностями, которые на 18% больше, чем предыдущий «рекордсмен», и является настолько мощным, что заставил учёных пересмотреть, как работает магнетизм. Человек, который открыл это вещество, дистанцировался со своими изучениями, чтобы никто из других учёных не смог бы воспроизвести его работу, так как сообщалось, что аналогичное соединение разрабатывалось в Японии в прошлом в 1996 г., но другие физики не смогли его вопроизвести, поэтому официально это вещество не приняли. Непонятно, должны ли японские физики пообещать сделать «Сепуку» при этих обстоятельствах. Если это вещество можно будет воспроизвести, это может означать новый век эффективной электроники и магнитных двигателей, возможно, усиленные по мощности на порядок.
10. Наиболее сильная сверхтекучесть
Сверхтекучесть является состоянием вещества (подобно твёрдому либо газообразному), которое имеет место при экстремально низких температурах, имеет высокую термопроводимость (каждая унция этого вещества должна иметь точно такую же температуру) и никакой вязкости. Гелий-2 является наиболее характерным представителем. Чашка «гелия-2» самопроизвольно поднимется и выльется из контейнера. «Гелий-2» также просочится через другие твёрдые материалы, так как полное отсутствие силы трения позволяет течь ему через другие невидимые отверстия, через которые не мог бы вытечь обычный гелий (или вода для данного случая). «Гелий-2» не приходит в нужное состояние при числе 1, как будто у него есть способность действовать по своему усмотрению, хотя это также наиболее эффективный термопроводник на Земле, в несколько сотен раз лучше меди. Теплота перемещается настолько быстро через «гелий-2», что она скорее передвигается волнами, подобно звуку (известному на самом деле как «второй звук»), чем рассеивается, при этом она просто перемещается от одной молекулы к другой. Между прочим, силы, управляющие возможностью «гелия-2» ползать по стене, названы «третьим звуком». У вас вряд ли будет что-либо более экстремальное, чем вещество, которое потребовало определение 2 новых типов звука.

Самый дорогой металл в мире и самое плотное вещество на планете

Размещено 01.02.2012 (актуально до 01.02.2013)

В природе очень много различных металлов и драгоценных камней, стоимость которых очень высока для большинства жителей планеты. Про драгоценные камни люди более-менее имеют представление, какие самые дорогие, какие больше всего ценятся. Но, вот как обстоят дела с металлами, большинство людей кроме золота и платина больше не знают дорогих металлов. Какой самый дорогой металл в мире? Любопытство людей не имеет границ, они в поисках ответов на самые интересные вопросы. Узнать стоимость самого дорогого металла на планете не проблема, так как это не является секретной информацией.



Скорее всего, что Вы впервые слышите это название – изотоп Осмия 1870s. Этот химический элемент и есть самый дорогой металл в мире. Вы могли видеть название такого химического элемента в таблице Менделеева под номером 76. Изотоп Осмия является самым плотным веществом на планете. Его плотность составляет 22,61 г/см 3 . При нормальных стандартных условиях осмий имеет серебристый цвет и обладает резким запахом. Этот металл относится к группе платиновых металлов. Этот металл применяют при производстве ядерного оружия, фармацевтике, аэрокосмической сфере, иногда в ювелирных изделиях.


Но, вот теперь главный вопрос – сколько стоит самый дорого металл в мире? Сейчас его стоимость на черном рынке составляет 200 000 долларов за 1 грамм. Так, как получение изотопа 1870s очень сложная задача, мало кто возьмется за это дело. Раньше, в 2004 году, Казахстан официально предлагал один грамм чистого изотопа Осмия за 10 000 долларов. Казахстан в свое время стала первым экспертом дорого металла, ни одно страна больше не выставляла на продажу этот металл.



Осмий был открыт английским химиком Смитсоном Теннантом в 1804 году. Осмий получают из обогащенного сырья платиновых металлов путём прокаливания этого концентрата на воздухе при температурах 800-900 градусов Цельсия. И до сих пор учёные пополняют таблицу Менделеева , получая элементы с невероятными свойствами.


Многие скажут, что есть еще дороже металл – это Калифорний 252. Цена Калифорния 252 составляет 6 500 000 долларов за 1 грамм. Но, стоит учесть тот факт, что мировой запас этого металла всего несколько грамм. Так, как он производится только на двух реакторах в России и США по 20-40 микрограмм в год. Но, его свойства очень впечатляющие: 1мкг калифорния дает более 2 миллионов нейтронов в секунду. Последние годы этот металл используется в медицине в качестве точечного источника нейтронов для локальной обработки злокачественных опухолей.

Металлы человечество начало активно использовать еще в 3000-4000 годах до нашей эры. Тогда люди познакомились с самыми распространенными из них, это золото , серебро , медь. Эти металлы было очень легко найти на поверхности земли. Чуть позже они познали химию и начали выделять из них такие виды как олово, свинец и железо. В Средневековье набирали популярность очень ядовитые виды металлов. В обиходе был мышьяк , которым было отравлено больше половины королевского двора во Франции. Так же и , которая помогала вылечить разные болезни тех времен, начиная от ангины и до чумы. Уже до двадцатого столетия было известно более 60 металлов, а вначале XXI века – 90. Прогресс не стоит на месте и ведет человечество вперед. Но встает вопрос, какой металл является тяжелым и превосходит по весу все остальные? И вообще, какие они, эти самые тяжелые металлы в мире?

Многие ошибочно думают, что золото и свинец являются самыми тяжелыми металлами. Почему именно так сложилось? Многие из нас выросли на старых фильмах и видели, как главный герой использует свинцовую пластину для зашиты от злобных пуль. В добавок, и сегодня используют свинцовые пластины в некоторых видах бронежилетов. А при слове золото у многих всплывает картинка с тяжелыми слитками этого металла. Но думать, что они самые тяжелые – ошибочно!

Для определения самого тяжелого металла надо брать во внимание его плотность, ведь чем больше плотность вещества, тем оно тяжелее.

ТОП-10 самых тяжелых металлов в мире

  1. Осмий (22,62 г/см 3),
  2. Иридий (22,53 г/см 3),
  3. Платина (21,44 г/см 3),
  4. Рений (21,01 г/см 3),
  5. Нептуний (20,48 г/см 3),
  6. Плутоний (19,85 г/см 3),
  7. Золото (19,85 г/см 3)
  8. Вольфрам (19,21 г/см 3),
  9. Уран (18,92 г/см 3),
  10. Тантал (16,64 г/см 3).

И где же свинец? А он располагается намного ниже в данном списке, в середине второго десятка.

Осмий и иридий — самые тяжелые металлы в мире

Рассмотрим основных тяжеловесов, которые делят 1 и 2 места. Начнем с иридия и заодно произнесём слова благодарности в адрес английского ученого Смитсона Теннат, который в 1803 году получил этот химический элемент из платины, где присутствовал вместе с осмием в виде примеси. Иридий с древнегреческого можно перевести, как «радуга». Металл имеет белый цвет с серебряным оттенком и его можно назвать ни только тяжеловесным, но и самым прочным. На нашей планете его очень мало и за год его добывают всего до 10000 кг. Известно, что большинство месторождений иридия можно обнаружить на местах падения метеоритов. Некоторые ученые приходят к мысли, что данный металл ранее был широко распространён на нашей планете, однако из-за своего веса, он постоянно выдавливал себя ближе к центру Земли. Иридий сейчас широко востребован в промышленности и используется для получения электрической энергии. Так же его любят использовать палеонтологи, и с помощью иридия определяют возраст многих находок. Вдобавок, данный металл могут использовать для покрытия некоторых поверхностей. Но сделать это сложно.


Далее рассмотрим осмий. Он самый тяжёлый в периодической таблице Менделеева , ну, соответственно, и самый тяжелый в мире металл. Осмий имеет оловянно-белый с синим оттенок и также открыт Смитсоном Теннат одновременно с иридием. Осмий практически невозможно обработать и, в основном, его находят на местах падения метеоритов. Он неприятно пахнет, запах похож на смесь хлора и чеснока. И с древнегреческого переводится, как «запах». Металл довольно тугоплавкий и используется в лампочках и в других приборах с тугоплавкими металлами. За один только грамм этого элемента надо заплатить более 10000 долларов, из этого понятно, что метал очень редкий.


Осмий

Как не крути, самые тяжелые металлы являются большой редкостью и поэтому они дорого стоят. И надо запомнить на будущее, что ни золото, ни свинец – не самые тяжелые металлы в мире! Иридий и осмий – вот победители в весе!

Каждый из вас знает, что эталоном твердости на сегодня так и остается алмаз. При определении механической твердости существующих на земле материалов твердость алмаза берется как эталон: при измерениях методом Мооса – в виде поверхностного образца, методами Виккерса или Роквелла – в качестве индентора (как более твердое тело при исследовании тела с меньшей твердостью). На сегодняшний день можно отметить несколько материалов, твердость которых приближается к характеристикам алмаза.

Сравниваются в данном случае оригинальные материалы, исходя из их микротвердости по методу Виккерса, когда материал считается сверхтвердым при показателях в более 40 ГПа. Твердость материалов может изменяться, в зависимости от характеристик синтеза образца или направления приложенной к нему нагрузки.

Колебания показателей твердости от 70 до 150 ГПа – общеустановленное понятие для твердых материалов, хотя эталонной величиной принято считать 115 ГПа. Давайте рассмотрим 10 самых твердых материалов, кроме алмаза, которые существуют в природе.

10. Субоксид бора (B 6 O) - твердость до 45 ГПа

Субоксид бора обладает способностями создавать зерна, имеющие форму икосаэдров. Образованные зерна при этом не являются обособленными кристаллами или разновидностями квазикристаллов, представляя собой своеобразные кристаллы-двойники, состоящие из двух десятков спаренных кристаллов-тетраэдров.

10. Диборид рения (ReB 2) - твердость 48 ГПа

Многие исследователи ставят под сомнение вопрос, может ли этот материал причисляться к материалам сверхтвердого типа. Это вызвано весьма необычными механическими свойствами соединения.

Послойное чередование разных атомов делает этот материал анизотропным. Поэтому измерение показателей твердости получаются разными при наличии разнотипных кристаллографических плоскостей. Таким образом, испытаниями диборида рения при малых нагрузках обеспечивается твердость в 48 ГПа, а при увеличении нагрузки твердость становится намного меньше и составляет приблизительно 22 ГПа.

8. Борид магния-алюминия (AlMgB 14) - твердость до 51 ГПа

Состав представляет собой смесь алюминия, магния, бора с невысокими показателями трения скольжения, а также высокой твердостью. Эти качества могли бы стать находкой для производства современных машин и механизмов, работающих без смазки. Но использование материала в такой вариации пока что считается непомерно дорогим.

AlMgB14 - специальные тоненькие пленки, создающиеся при помощи лазерного напыления импульсного типа, имеют способность обладать микротвердостью до 51 ГПа.

7. Бор-углерод-кремний - твердость до 70 ГПа

Основа такого соединения обеспечивает сплаву качества, подразумевающие оптимальную устойчивость к химическим воздействиям негативного типа и высокой температуре. Такой материал обеспечивается микротвердостью до 70 ГПа.

6. Карбид бора B 4 C (B 12 C 3) - твердость до 72 ГПа

Еще один материал – карбид бора. Вещество достаточно активно стало использоваться в разных сферах промышленности практически сразу же после его изобретения в 18 веке.

Микротвердость материала достигает 49 ГПа, но доказано, что и этот показатель можно увеличить посредством добавления ионов аргона в строение кристаллической решетки – до 72 ГПа.

5. Нитрид углерода-бора - твердость до 76 ГПа

Исследователи и ученые со всего мира давно пытаются синтезировать многосложные сверхтвердые материалы, в чем уже были достигнуты ощутимые результаты. Компонентами соединения являются атомы бора, углерода и азота – близкие по размерам. Качественная твердость материала доходит до 76 ГПа.

4. Наноструктурированный кубонит - твердость до 108 ГПа

Материал еще называется кингсонгитом, боразоном или эльбором, а также обладает уникальными качествами, успешно используемыми в современной промышленности. При показателях твердости кубонита в 80-90 ГПа, близких к алмазному эталону, сила закона Холла-Петча способна обусловить их значительный рост.

Это означает, что при уменьшении размеров кристаллических зерен увеличивается твердость материала – существуют определенные возможности увеличения до 108 ГПа.

3. Вюртцитный нитрид бора - твердость до 114 ГПа

Вюрцитная кристаллическая структура обеспечивает высокие показатели твердости данному материалу. При локальных структурных модификациях, во время приложения нагрузки конкретного типа, связи между атомами в решетке вещества перераспределяются. В этот момент качественная твердость материала становится больше на 78 %.

Лонсдейлит является аллотропной модификацией углерода и отличается явной схожестью с алмазом. Обнаружен твердый природный материал был в метеоритном кратере, образовавшись из графита – одного из компонентов метеорита, однако рекордной степенью прочности он не обладал.

Учеными было доказано еще в 2009 году, что отсутствие примесей способно обеспечить твердость, превышающую твердость алмаза. Высокие показатели твердости способны обеспечиваться в этом случае, как и в случае с вюртцитным нитридом бора.

Полимеризованный фуллерит считается в наше время самым твердым материалом, известным науке. Это структурированный молекулярный кристалл, узлы которого состоят из целых молекул, а не из отдельных атомов.

Твердость фуллерита составляет до 310 ГПа, и он способен поцарапать алмазную поверхность, как обычный пластик. Как видите, алмаз это больше не самый твёрдый природный материал в мире, науке доступны более твердые соединения.

Пока это самые твердые материалы на Земле, известные науке. Вполне возможно, в скором времени нас ждут новые открытия и прорыв в области химии/физики, что позволит добиться более высокой твердости.

С незапамятных времен люди активно используют различные металлы. После изучения их свойств, вещества заняли достойное место в таблице знаменитого Д. Менделеева. До сих пор не утихают споры ученых относительно вопроса, какому металлу присвоить звание самого тяжелого и плотного в мире. На чаше весов два элемента менделеевской таблицы – иридий, а также осмий. Чем они интересны, читайте далее.

На протяжении веков люди занимались изучением полезных свойств самых распространенных металлов на планете. Больше всего сведений наука хранит о золоте серебре и меди. Со временем человечество познакомилось с железом, более легкими металлами – оловом и свинцом. В мире Средневековья люди активно пользовались мышьяком, а болезни лечили ртутью.

Благодаря стремительному прогрессу, сегодня самыми тяжелыми и плотными металлами считается не один элемент таблицы, а сразу два. Под номером 76 расположен осмий (Os), а под номером 77 – иридий (Ir), вещества имеют следующие показатели плотности:

  • осмий тяжелый, благодаря плотности 22,62 г/ см³;
  • иридий не намного легче – 22,53 г/ см³.

Плотность относят к физическим свойствам металлов, она представляет собой соотношение массы вещества к его объему. Теоретические расчеты плотности обоих элементов имеют некоторые погрешности, поэтому оба металла сегодня принято считать самыми тяжелыми.

Для наглядности можно сравнить вес обыкновенной пробки с весом пробки из самого тяжелого металла в мире. Чтобы уравновесить чаши весов с пробкой из осмия либо иридия, потребуется более сотни обычных пробок.

История открытия металлов

Оба элемента были открыты на заре XIX века ученым Смитсоном Теннантом. Многие исследователи того времени занимались изучением свойств сырой платины, обрабатывая ее «царской водкой». Только Теннанту удалось обнаружить в полученном осадке два химических вещества:

  • осадочный элемент со стойким запахом хлора ученый назвал осмием;
  • субстанция с меняющейся окраской получила название иридий (радуга).

Оба элемента были представлены единым сплавом, который ученому удалось разделить. Дальнейшим исследованием самородков платины занялся русский химик К. Клаус, тщательно исследовавший свойства осадочных элементов. Сложность определения самого тяжелого металла в мире заключается в невысокой разности их плотности, которая не является величиной постоянной.

Яркие характеристики самых плотных металлов

Добытые экспериментальным путем вещества представляют собой порошок, довольно трудно поддающийся обработке, ковка металлов требует очень высоких температур. Наиболее распространенной формой содружества иридия с осмием является сплав осмистого иридия, который добывают в месторождениях платины, пластах залегания золота.

Наиболее частым местом обнаружения иридия считаются метеориты, богатые железом. Самородного осмия в мире природы не найти, только в содружестве с иридием и другими компонентами платиновой группы. Залежи часто содержат соединения серы с мышьяком.

Особенности самого тяжелого и дорогого металла в мире

Среди элементов периодической таблицы Менделеева самым дорогостоящим считается осмий. Серебристый металл с голубоватым отливом принадлежит к платиновой группе благородных химических соединений. Свой блеск самый плотный, но очень хрупкий металл не теряет под воздействием высоких температурных показателей.

Характеристики

  • Элемент №76 Osmium имеет атомную массу 190,23 а.е.м.;
  • Расплавленное при температуре 3033°C вещество закипит при 5012°C.
  • Самый тяжелый материал обладает плотностью 22,62 г/ см³;
  • Структура кристаллической решетки имеет гексагональную форму.

Несмотря на изумительно холодный блеск серебристого отлива, осмий не годится для производства ювелирных изделий из-за высочайшей токсичности. Для плавки украшения потребовалась бы температура, как на поверхности Солнца, ведь самый плотный в мире металл разрушается при механическом воздействии.

Превращаясь в порошок, осмий взаимодействует с кислородом, реагирует на серу, фосфор, селен, на царскую водку реакция вещества очень медленная. Osmium не обладает магнетизмом, сплавы имеют склонность к окислению, формированию кластерных соединений.

Где применяют

Самый тяжелый и невероятно плотный металл обладает высокой износостойкостью, поэтому добавка его к сплавам значительно повышает их крепость. Применение осмия в основном связано с химической промышленностью. Кроме того, его используют для следующих нужд:

  • изготовления ёмкостей, предназначенных для хранения отходов ядерного синтеза;
  • для нужд ракетостроения, оружейного производства (боеголовки);
  • в часовой промышленности для изготовления механизмов брендовых моделей;
  • для изготовления хирургических имплантатов, деталей кардиостимуляторов.

Интересно, что самый плотный металл считается единственным в мире элементом, неподвластным воздействию агрессии «адской» смеси кислот (азотная и соляная). Алюминий, соединенный с осмием, становится настолько пластичным, что его можно вытягивать без разрыва.

Тайны самого редкого и плотного в мире металла

Принадлежность иридия к платиновой группе наделяет его свойством невосприимчивости к обработке кислотами и их смесями. В мире иридий получают из анодных шламов при медно-никелевом производстве. После обработки шлама царской водкой, выпавший осадок прокаливают, результатом чего становится добыча иридия.

Характеристики

Самый твердый металл серебристо-белого цвета обладает следующей группой свойств:

  • элемент таблицы Менделеева Iridium №77 обладает атомной массой 192,22 а.е.м.;
  • расплавленное при температуре 2466°C вещество закипит при 4428°C;
  • плотность расплавленного иридия – в пределах 19,39 г/см³;
  • плотность элемента при комнатной температуре – 22,7 г/см³;
  • кристаллическая решётка иридия ассоциируется с гранецентрированным кубом.

Тяжелый иридий не меняется под воздействием обычной температуры воздуха. Результатом прокаливания под воздействием нагревания при определенных температурах становится образование многовалентных соединений. Порошок свежего осадка иридиевой черни поддается частичному растворению царской водкой, а также раствором хлора.

Область применения

Хотя Iridium принадлежит к числу драгоценных металлов, для ювелирных изделий его применяют редко. Элемент, плохо поддающийся обработкам, весьма востребован при строительстве дорог, производстве автомобильных деталей. Сплавы с неподверженным окислению самым плотным металлом применяются для следующих целей:

  • изготовления тиглей для проведения лабораторных опытов;
  • производства специальных мундштуков для стеклодувов;
  • покрытия кончиков перьев и стержней шариковых ручек;
  • изготовления долговечных свечей зажигания для автомобилей;

Сплавы с изотопами иридия используют на сварочном производстве, в приборостроении, для выращивания кристаллов в составе лазерной техники. Применение самого тяжелого металла позволило осуществлять лазерную коррекцию зрения, дробление камней в почках и другие медицинские процедуры.

Хотя Iridium лишен токсичности и не опасен для биологических организмов, в природной среде можно встретиться его опасным изотопом – гексафторидом. Вдыхание паров ядовитого вещества ведет к мгновенному удушью и смерти.

Места природного залегания

Залежи самого плотного металла Iridium в мире природы ничтожно малы, их намного меньше, чем запасов платины. Предположительно самое тяжелое вещество сместилось к ядру планеты, поэтому объемы промышленной добычи элемента невелики (около трех тонн в год). Изделия из сплавов с иридием могут прослужить до 200 лет, драгоценности станут более долговечными.

Самородков самого тяжелого металла с неприятным запахом Osmium в природе не найти. В составе минералов можно обнаружить следы осмистого иридия вместе с платиной и палладием, рутением. Залежи осмистого иридия разведаны на территории Сибири (Россия), некоторых штатов Америки (Аляска и Калифорния), в Австралии и Южной Африке.

Если обнаружены залежи платины, удастся выделить осмий с иридием для укрепления и усиления физических либо химических соединений различных изделий.