Решение линейных уравнений с примерами. Линейные уравнения

Уравнений. Если сказать по-другому, решение всех уравнений начинается с этих преобразований. При решении линейных уравнений, оно (решение) на тождественных преобразованиях и заканчивается окончательным ответом.

Случай ненулевого коэффициента при неизвестной переменной.

ax+b=0, a ≠ 0

Переносим в одну сторону члены с иксом, а в другую сторону — числа . Обязательно помните, что перенося слагаемые на противоположную сторону уравнения, нужно поменять знак:

ax:(a)=-b:(a)

Сокращаем а при х и получаем:

x=-b:(a)

Это ответ. Если нужно проверить, является ли число -b:(a) корнем нашего уравнения, то нужно подставить в начальное уравнение вместо х это самое число:

a(-b:(a))+b=0 (т.е. 0=0)

Т.к. это равенство верное, то -b:(a) и правда есть корень уравнения.

Ответ: x=-b:(a), a ≠ 0.

Первый пример :

5x+2=7x-6

Переносим в одну сторону члены с х , а в другую сторону числа:

5x-7x=-6-2

-2x:(-2)=-8:(-2)

При неизвестной коэффициент сократили и получили ответ:

Это ответ. Если нужно проверить, действительно ли число 4 корнем нашего уравнения, подставляем в исходное уравнение вместо икса это число:

5*4+2=7*4-6 (т.е. 22=22)

Т.к. это равенство верное, то 4 - это корень уравнения.

Второй пример:

Решить уравнение:

5x+14=x-49

Перенеся неизвестные и числа в разные стороны, получили:

Делим части уравнения на коэффициент при x (на 4) и получаем:

Третий пример:

Решить уравнение:

Сначала избавляемся от иррациональности в коэффициенте при неизвестном, домножив все слагаемые на :

Эту форму считают упрощаемой, т.к. в числе есть корень числа в знаменателе. Нужно упростить ответ, умножив числитель и знаменатель на одинаковое число, у нас это :

Случай отсутствия решений.

Решить уравнение:

2x+3=2x+7

При всех x наше уравнение не станет верным равенством. То есть, у нашего уравнения нет корней.

Ответ: решений нет.

Частный случай — бесконечное число решений.

Решить уравнение:

2x+3=2x+3

Перенеся иксы и числа в разные стороны и приведя подобные слагаемые, получаем уравнение:

Здесь тоже не возможно разделить обе части на 0, т.к. это запрещено. Однако, подставив на место х всякое число, мы получаем верное равенство. То есть, всякое число есть решение такого уравнения. Т.о., здесь бесконечное число решений.

Ответ: бесконечное число решений.

Случай равенства двух полных форм.

ax+b=cx+d

ax-cx=d-b

(a-c)x=d-b

x=(d-b):(a-c)

Ответ: x=(d-b):(a-c) , если d≠b и a≠c , иначе бесконечно много решений, но, если a=c , а d≠b , то решений нет.

Сперва необходимо понять, что же это такое.

Есть простое определение линейного уравнения , которое дают в обычной школе: «уравнение, в котором переменная встречается только в первой степени». Но оно не совсем верно: уравнение не является линейным, оно даже не приводится к такому, оно приводится к квадратичному.

Более точное определение таково: линейное уравнение – это уравнение, которое с помощью эквивалентных преобразований можно привести к виду , где title="a,b in bbR, ~a0">. На деле мы будем приводить это уравнение к виду путём переноса в правую часть и деления обеих частей уравнения на . Осталось разъяснить, какие уравнения и как мы можем привести к такому виду, и, самое главное, что дальше делать с ними, чтобы решить его.

На самом деле, чтобы понять, является ли уравнение линейным или нет, его необходимо сперва упростить, то есть привести к виду, где его классификация будет однозначна. Запомните, с уравнением можно делать всё, что угодно, что не изменит его корней - это и есть эквивалентное преобразование . Из самых простых эквивалентных преобразований можно выделить:

  1. раскрытие скобок
  2. приведение подобных
  3. умножение и/или деление обеих частей уравнения на ненулевое число
  4. прибавление и/или вычитание из обеих частей одного и того же числа или выражения*
Эти преобразования Вы можете делать безболезненно, не задумываясь о том, "испортите" Вы уравнение или нет.
*Частной интерпретацией последнего преобразования является "перенос" слагаемых из одной части в другую со сменой знака.

Пример 1:
(раскроем скобки)
(прибавим к обеим частям и вычитание /перенесём со сменой знака числа влево, а переменные вправо)
(приведём подобные)
(разделим на 3 обе части уравнения)

Вот мы и получили уравнение, которое имеет такие же корни, как и исходное. Напомним читателю, что "решить уравнение" - значит найти все его корни и доказать, что других нет, а "корень уравнения" - это такое число, которое будучи подставленным вместо неизвестной, обратит уравнение в верное равенство. Ну так в последнее уравнение найти число, обращающее уравнение в верное равенство очень просто - это число . Никакое другое число тождества из данного уравнения не сделает. Ответ:

Пример 2:
(умножим обе части уравнения на , предварительно убедившись, что мы не умножаем на : title="x3/2"> и title="x3">. То есть если такие корни получатся, то мы их обязаны будем выкинуть.)
(раскроем скобки)
(перенесём слагаемые)
(приведём подобные)
(разделим обе части на )

Примерно так и решаются все линейные уравнения. Для читателей помладше, скорее всего, данное объяснение показалось сложным, поэтому предлагаем версию "линейные уравнения для 5 класса"

В данной статье рассмотрим принцип решения таких уравнений как линейные уравнения. Запишем определение этих уравнений, зададим общий вид. Разберем все условия нахождения решений линейных уравнений, используя, в том числе, практические примеры.

Обратим внимание, что материал ниже содержит информацию по линейным уравнениям с одной переменной. Линейные уравнения с двумя переменными рассматриваются в отдельной статье.

Что такое линейное уравнение

Определение 1

Линейное уравнение – это уравнение, запись которого такова:
a · x = b , где x – переменная, a и b – некоторые числа.

Такая формулировка использована в учебнике алгебры (7 класс) Ю.Н.Макарычева.

Пример 1

Примерами линейных уравнений будут:

3 · x = 11 (уравнение с одной переменной x при а = 5 и b = 10 );

− 3 , 1 · y = 0 (линейное уравнение с переменной y , где а = - 3 , 1 и b = 0);

x = − 4 и − x = 5 , 37 (линейные уравнения, где число a записано в явном виде и равно 1 и - 1 соответственно. Для первого уравнения b = - 4 ; для второго - b = 5 , 37 ) и т.п.

В различных учебных материалах могут встречаться разные определения. К примеру, Виленкин Н.Я. к линейным относит также те уравнения, которые возможно преобразовать в вид a · x = b при помощи переноса слагаемых из одной части в другую со сменой знака и приведения подобных слагаемых. Если следовать такой трактовке, уравнение 5 · x = 2 · x + 6 – также линейное.

А вот учебник алгебры (7 класс) Мордковича А.Г. задает такое описание:

Определение 2

Линейное уравнение с одной переменной x – это уравнение вида a · x + b = 0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

Пример 2

Примером линейных уравнений подобного вида могут быть:

3 · x − 7 = 0 (a = 3 , b = − 7) ;

1 , 8 · y + 7 , 9 = 0 (a = 1 , 8 , b = 7 , 9) .

Но также там приведены примеры линейных уравнений, которые мы уже использовали выше: вида a · x = b , например, 6 · x = 35 .

Мы сразу условимся, что в данной статье под линейным уравнением с одной переменной мы будем понимать уравнение записи a · x + b = 0 , где x – переменная; a , b – коэффициенты. Подобная форма линейного уравнения нам видится наиболее оправданной, поскольку линейные уравнения – это алгебраические уравнения первой степени. А прочие уравнения, указанные выше, и уравнения, приведенные равносильными преобразованиями в вид a · x + b = 0 , определим, как уравнения, сводящиеся к линейным уравнениям.

При таком подходе уравнение 5 · x + 8 = 0 – линейное, а 5 · x = − 8 - уравнение, сводящееся к линейному.

Принцип решения линейных уравнений

Рассмотрим, как определить, будет ли заданное линейное уравнение иметь корни и, если да, то сколько и как их определить.

Определение 3

Факт наличия корней линейного уравнения определятся значениями коэффициентов a и b . Запишем эти условия:

  • при a ≠ 0 линейное уравнение имеет единственный корень x = - b a ;
  • при a = 0 и b ≠ 0 линейное уравнение не имеет корней;
  • при a = 0 и b = 0 линейное уравнение имеет бесконечно много корней. По сути в данном случае любое число может стать корнем линейного уравнения.

Дадим пояснение. Нам известно, что в процессе решения уравнения возможно осуществлять преобразование заданного уравнения в равносильное ему, а значит имеющее те же корни, что исходное уравнение, или также не имеющее корней. Мы можем производить следующие равносильные преобразования:

  • перенести слагаемое из одной части в другую, сменив знак на противоположный;
  • умножить или разделить обе части уравнения на одно и то же число, не равное нулю.

Таким образом, преобразуем линейное уравнение a · x + b = 0 , перенеся слагаемое b из левой части в правую часть со сменой знака. Получим: a · x = − b .

Итак, производим деление обеих частей уравнения на не равное нулю число а, получив в итоге равенство вида x = - b a . Т.е., когда a ≠ 0 , исходное уравнение a · x + b = 0 равносильно равенству x = - b a , в котором очевиден корень - b a .

Методом от противного возможно продемонстрировать, что найденный корень – единственный. Зададим обозначение найденного корня - b a как x 1 . Выскажем предположение, что имеется еще один корень линейного уравнения с обозначением x 2 . И конечно: x 2 ≠ x 1 , а это, в свою очередь, опираясь на определение равных чисел через разность, равносильно условию x 1 − x 2 ≠ 0 . С учетом вышесказанного мы можем составить следующие равенства, подставив корни:
a · x 1 + b = 0 и a · x 2 + b = 0 .
Свойство числовых равенств дает возможность произвести почленное вычитание частей равенств:

a · x 1 + b − (a · x 2 + b) = 0 − 0 , отсюда: a · (x 1 − x 2) + (b − b) = 0 и далее a · (x 1 − x 2) = 0 . Равенство a · (x 1 − x 2) = 0 является неверным, поскольку ранее условием было задано, что a ≠ 0 и x 1 − x 2 ≠ 0 . Полученное противоречие и служит доказательством того, что при a ≠ 0 линейное уравнение a · x + b = 0 имеет лишь один корень.

Обоснуем еще два пункта условий, содержащие a = 0 .

Когда a = 0 линейное уравнение a · x + b = 0 запишется как 0 · x + b = 0 . Свойство умножения числа на нуль дает нам право утверждать, что какое бы число не было взято в качестве x , подставив его в равенство 0 · x + b = 0 , получим b = 0 . Равенство справедливо при b = 0 ; в прочих случаях, когда b ≠ 0 , равенство становится неверным.

Таким образом, когда a = 0 и b = 0 , любое число может стать корнем линейного уравнения a · x + b = 0 , поскольку при выполнении этих условий, подставляя вместо x любое число, получаем верное числовое равенство 0 = 0 . Когда же a = 0 и b ≠ 0 линейное уравнение a · x + b = 0 вовсе не будет иметь корней, поскольку при выполнении указанных условий, подставляя вместо x любое число, получаем неверное числовое равенство b = 0 .

Все приведенные рассуждения дают нам возможность записать алгоритм, дающий возможность найти решение любого линейного уравнения:

  • по виду записи определяем значения коэффициентов a и b и анализируем их;
  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число станет корнем заданного уравнения;
  • при a = 0 и b ≠ 0
  • при a , отличном от нуля, начинаем поиск единственного корня исходного линейного уравнения:
  1. перенесем коэффициент b в правую часть со сменой знака на противоположный, приводя линейное уравнение к виду a · x = − b ;
  2. обе части полученного равенства делим на число a , что даст нам искомый корень заданного уравнения: x = - b a .

Собственно, описанная последовательность действий и есть ответ на вопрос, как находить решение линейного уравнения.

Напоследок уточним, что уравнения вида a · x = b решаются по похожему алгоритму с единственным отличием, что число b в такой записи уже перенесено в нужную часть уравнения, и при a ≠ 0 можно сразу выполнять деление частей уравнения на число a .

Таким образом, чтобы найти решение уравнения a · x = b , используем такой алгоритм:

  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число может стать его корнем;
  • при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
  • при a , не равном нулю, обе части уравнения делятся на число a , что дает возможность найти единственный корень, который равен b a .

Примеры решения линейных уравнений

Пример 3

Необходимо решить линейное уравнение 0 · x − 0 = 0 .

Решение

По записи заданного уравнения мы видим, что a = 0 и b = − 0 (или b = 0 , что то же самое). Таким образом, заданное уравнение может иметь бесконечно много корней или любое число.

Ответ: x – любое число.

Пример 4

Необходимо определить, имеет ли корни уравнение 0 · x + 2 , 7 = 0 .

Решение

По записи определяем, что а = 0 , b = 2 , 7 . Таким образом, заданное уравнение не будет иметь корней.

Ответ: исходное линейное уравнение не имеет корней.

Пример 5

Задано линейное уравнение 0 , 3 · x − 0 , 027 = 0 . Необходимо решить его.

Решение

По записи уравнения определяем, что а = 0 , 3 ; b = - 0 , 027 , что позволяет нам утверждать наличие единственного корня у заданного уравнения.

Следуя алгоритму, переносим b в правую часть уравнения, сменив знак, получаем: 0 , 3 · x = 0 , 027 . Далее разделим обе части полученного равенства на а = 0 , 3 , тогда: x = 0 , 027 0 , 3 .

Осуществим деление десятичных дробей:

0 , 027 0 , 3 = 27 300 = 3 · 9 3 · 100 = 9 100 = 0 , 09

Полученный результат есть корень заданного уравнения.

Кратко решение запишем так:

0 , 3 · x - 0 , 027 = 0 , 0 , 3 · x = 0 , 027 , x = 0 , 027 0 , 3 , x = 0 , 09 .

Ответ: x = 0 , 09 .

Для наглядности приведем решение уравнения записи a · x = b .

Пример N

Заданы уравнения: 1) 0 · x = 0 ; 2) 0 · x = − 9 ; 3) - 3 8 · x = - 3 3 4 . Необходимо решить их.

Решение

Все заданные уравнения отвечают записи a · x = b . Рассмотрим по очереди.

В уравнении 0 · x = 0 , a = 0 и b = 0 , что означает: любое число может быть корнем этого уравнения.

Во втором уравнении 0 · x = − 9: a = 0 и b = − 9 , таким образом, это уравнение не будет иметь корней.

По виду последнего уравнения - 3 8 · x = - 3 3 4 запишем коэффициенты: a = - 3 8 , b = - 3 3 4 , т.е. уравнение имеет единственный корень. Найдем его. Поделим обе части уравнения на a , получим в результате: x = - 3 3 4 - 3 8 . Упростим дробь, применив правило деления отрицательных чисел с последующим переводом смешанного числа в обыкновенную дробь и делением обыкновенных дробей:

3 3 4 - 3 8 = 3 3 4 3 8 = 15 4 3 8 = 15 4 · 8 3 = 15 · 8 4 · 3 = 10

Кратко решение запишем так:

3 8 · x = - 3 3 4 , x = - 3 3 4 - 3 8 , x = 10 .

Ответ: 1) x – любое число, 2) уравнение не имеет корней, 3) x = 10 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид

aх + b = 0 , где a и b произвольные числа, называется линейным уравнением с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.

Например, все уравнения:

2х + 3= 7 – 0,5х; 0,3х = 0; x/2 + 3 = 1/2 (х – 2) - линейные.

Значение неизвестного, обращающее уравнение в верное равенство называется решением или корнем уравнения .

Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.

А значение х = 3 не обращает уравнение 3х + 7 = 13 в верное равенство, так как 3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.

Решение любых линейных уравнений сводится к решению уравнений вида

aх + b = 0.

Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим

Если a ≠ 0, то х = ‒ b/a .

Пример 1. Решите уравнение 3х + 2 =11.

Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим
3х = 11 – 2.

Выполним вычитание, тогда
3х = 9.

Чтобы найти х надо разделить произведение на известный множитель, то есть
х = 9: 3.

Значит, значение х = 3 является решением или корнем уравнения.

Ответ: х = 3 .

Если а = 0 и b = 0 , то получим уравнение 0х = 0. Это уравнение имеет бесконечно много решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения является любое число.

Пример 2. Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.

Раскроем скобки:
5х – 15 + 2 = 3х – 12 + 2х ‒ 1.


5х – 3х ‒ 2х = – 12 ‒ 1 + 15 ‒ 2.

Приведем подобные члены:
0х = 0.

Ответ: х - любое число .

Если а = 0 и b ≠ 0 , то получим уравнение 0х = - b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но b ≠ 0 .

Пример 3. Решите уравнение х + 8 = х + 5.

Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
х – х = 5 ‒ 8.

Приведем подобные члены:
0х = ‒ 3.

Ответ: нет решений.

На рисунке 1 изображена схема решения линейного уравнения

Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.

Пример 4. Пусть надо решить уравнение

1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.

2) После сокращения получим
4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)

3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:
4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .

4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:
4х + 6х – 30х – 24х + 22х = ‒ 90 – 86 + 16 – 6 + 12.

5) Приведем подобные члены:
‒ 22х = ‒ 154.

6) Разделим на – 22 , Получим
х = 7.

Как видим, корень уравнения равен семи.

Вообще такие уравнения можно решать по следующей схеме :

а) привести уравнение к целому виду;

б) раскрыть скобки;

в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;

г) привести подобные члены;

д) решить уравнение вида aх = b,которое получили после приведения подобных членов.

Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2 ), третьего (Пример. 1, 3 ) и даже с пятого этапа, как в примере 5.

Пример 5. Решите уравнение 2х = 1/4.

Находим неизвестное х = 1/4: 2,
х = 1/8
.

Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.

Пример 6. Решите уравнение 2 (х + 3) = 5 – 6х.

2х + 6 = 5 – 6х

2х + 6х = 5 – 6

Ответ: ‒ 0, 125

Пример 7. Решите уравнение – 6 (5 – 3х) = 8х – 7.

– 30 + 18х = 8х – 7

18х – 8х = – 7 +30

Ответ: 2,3

Пример 8. Решите уравнение

3(3х – 4) = 4 · 7х + 24

9х – 12 = 28х + 24

9х – 28х = 24 + 12

Пример 9. Найдите f(6), если f (x + 2) = 3 7-х

Решение

Так как надо найти f(6), а нам известно f (x + 2),
то х + 2 = 6.

Решаем линейное уравнение х + 2 = 6,
получаем х = 6 – 2, х = 4.

Если х = 4, тогда
f(6) = 3 7-4 = 3 3 = 27

Ответ: 27.

Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, записывайтесь на мои уроки в РАСПИСАНИИ . Буду рада Вам помочь!

Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

При решении линейных уравнений, мы стремимся найти корень, то есть такое значение для переменной, которое превратит уравнение в правильное равенство.

Чтобы найти корень уравнения нужно равносильными преобразования привести данное нам уравнение к виду

\(x=[число]\)

Это число и будет корнем.

То есть, мы преобразовываем уравнение, делая его с каждым шагом все проще, до тех пор, пока не сведем к совсем примитивному уравнению «икс = число», где корень – очевиден. Наиболее часто применяемыми при решении линейных уравнений являются следующие преобразования:

Например : прибавим \(5\) к обеим частям уравнения \(6x-5=1\)

\(6x-5=1\) \(|+5\)
\(6x-5+5=1+5\)
\(6x=6\)

Обратите внимание, что тот же результат мы могли бы получить быстрее – просто записав пятерку с другой стороны уравнения и поменяв при этом ее знак. Собственно, именно так и делается школьный «перенос через равно со сменой знака на противоположный».

2. Умножение или деление обеих частей уравнения на одинаковое число или выражение.

Например : разделим уравнение \(-2x=8\) на минус два

\(-2x=8\) \(|:(-2)\)
\(x=-4\)

Обычно данный шаг выполняется в самом конце, когда уравнение уже приведено к виду \(ax=b\), и мы делим на \(a\), чтобы убрать его слева.

3. Использование свойств и законов математики: раскрытие скобок, приведение подобных слагаемых, сокращение дробей и т.д.

Прибавляем \(2x\) слева и справа

Вычитаем \(24\) из обеих частей уравнения

Опять приводим подобные слагаемые

Теперь делим уравнение на \(-3\), тем самым убирая перед иксом в левой части.

Ответ : \(7\)

Ответ найден. Однако давайте его проверим. Если семерка действительно корень, то при подстановке ее вместо икса в первоначальное уравнение должно получиться верное равенство - одинаковые числа слева и справа. Пробуем.

Проверка:
\(6(4-7)+7=3-2\cdot7\)
\(6\cdot(-3)+7=3-14\)
\(-18+7=-11\)
\(-11=-11\)

Сошлось. Значит, семерка и в самом деле является корнем исходного линейного уравнения.

Не ленитесь проверять подстановкой найденные вами ответы, особенно если вы решаете уравнение на контрольной или экзамене.

Остается вопрос – а как определить, что делать с уравнением на очередном шаге? Как именно его преобразовывать? Делить на что-то? Или вычитать? И что конкретно вычитать? На что делить?

Ответ прост:

Ваша цель – привести уравнение к виду \(x=[число]\), то есть, слева икс без коэффициентов и чисел, а справа – только число без переменных. Поэтому смотрите, что вам мешает и делайте действие, обратное тому, что делает мешающий компонент.

Чтобы лучше это понять, разберем по шагам решение линейного уравнения \(x+3=13-4x\).

Давайте подумаем: чем данное уравнение отличается от \(x=[число]\)? Что нам мешает? Что не так?

Ну, во-первых, мешает тройка, так как слева должен быть только одинокий икс, без чисел. А что «делает» тройка? Прибавляется к иксу. Значит, чтобы ее убрать - вычтем такую же тройку. Но если мы вычитаем тройку слева, то должны вычесть ее и справа, чтобы равенство не было нарушено.

\(x+3=13-4x\) \(|-3\)
\(x+3-3=13-4x-3\)
\(x=10-4x\)

Хорошо. Теперь что мешает? \(4x\) справа, ведь там должны быть только числа. \(4x\) вычитается - убираем прибавлением .

\(x=10-4x\) \(|+4x\)
\(x+4x=10-4x+4x\)

Теперь приводим подобные слагаемые слева и справа.

Уже почти готово. Осталось убрать пятерку слева. Что она «делает»? Умножается на икс. Поэтому убираем ее делением .

\(5x=10\) \(|:5\)
\(\frac{5x}{5}\) \(=\)\(\frac{10}{5}\)
\(x=2\)

Решение завершено, корень уравнения – двойка. Можете проверить подстановкой.

Заметим, что чаще всего корень в линейных уравнениях только один . Однако могут встретиться два особых случая.

Особый случай 1 – в линейном уравнении нет корней.

Пример . Решить уравнение \(3x-1=2(x+3)+x\)

Решение :

Ответ : нет корней.

На самом деле, то, что мы придем к такому результату было видно раньше, еще когда мы получили \(3x-1=3x+6\). Вдумайтесь: как могут быть равны \(3x\) из которых вычли \(1\), и \(3x\) к которым прибавили \(6\)? Очевидно, что никак, ведь с одним и тем же сделали разные действия! Понятно, что результаты будут отличаться.

Особый случай 2 – в линейном уравнении бесконечное количество корней.

Пример . Решить линейное уравнение \(8(x+2)-4=12x-4(x-3)\)

Решение :

Ответ : любое число.

Это, кстати, было заметно еще раньше, на этапе: \(8x+12=8x+12\). Действительно, слева и справа – одинаковые выражения. Какой икс ни подставь – будет одно и то же число и там, и там.

Более сложные линейные уравнения.

Исходное уравнение не всегда сразу выглядит как линейное, иногда оно «маскируется» под другие, более сложные уравнения. Однако в процессе преобразований маскировка спадает.

Пример . Найдите корень уравнения \(2x^{2}-(x-4)^{2}=(3+x)^{2}-15\)

Решение :

\(2x^{2}-(x-4)^{2}=(3+x)^{2}-15\)

Казалось бы, здесь есть икс в квадрате – это не линейное уравнение! Но не спешите. Давайте применим

\(2x^{2}-(x^{2}-8x+16)=9+6x+x^{2}-15\)

Почему результат раскрытия \((x-4)^{2}\) стоит в скобке, а результат \((3+x)^{2}\) нет? Потому что перед первым квадратом стоит минус, который изменит все знаки. И чтобы не забыть об этом – берем результат в скобки, которую теперь раскрываем.

\(2x^{2}-x^{2}+8x-16=9+6x+x^{2}-15\)

Приводим подобные слагаемые

\(x^{2}+8x-16=x^{2}+6x-6\)

\(x^{2}-x^{2}+8x-6x=-6+16\)

Опять приводим подобные.

Вот так. Оказывается, исходное уравнение – вполне себе линейное, а иксы в квадрате не более чем ширма, чтоб нас запутать. :) Дорешиваем, деля уравнение на \(2\), и получаем ответ.

Ответ : \(x=5\)


Пример . Решить линейное уравнение \(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)

Решение :

\(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)

Уравнение не похоже на линейное, дроби какие-то... Однако давайте избавимся от знаменателей, умножив обе части уравнения на общий знаменатель всех – шестерку

\(6\cdot\)\((\frac{x+2}{2}\) \(-\) \(\frac{1}{3})\) \(=\) \(\frac{9+7x}{6}\) \(\cdot 6\)

Раскрываем скобку слева

\(6\cdot\)\(\frac{x+2}{2}\) \(-\) \(6\cdot\)\(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\) \(\cdot 6\)

Теперь сокращаем знаменатели

\(3(x+2)-2=9+7x\)

Вот теперь похоже на обычное линейное! Дорешиваем его.

Переносом через равно собираем иксы справа, а числа слева

Ну и поделив на \(-4\) правую и левую часть, получаем ответ

Ответ : \(x=-1,25\)