Законы наследования признаков. Условия выполнения законов менделя Законы менделя не проявляются у

Законы Менделя - принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя . Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет» .

Энциклопедичный YouTube

    1 / 5

    ✪ Первый и второй законы Менделя. Естествознание 3.2

    ✪ Третий закон Менделя. Естествознание 3.3

    ✪ Урок биологии №20. Грегор Мендель и его Первый закон.

    ✪ Первый и второй законы Менделя супердоходчиво

    ✪ 1 закон Менделя. Закон доминирования.Подготовка к ЕГЭ и ОГЭ по биологии

    Субтитры

Предшественники Менделя

В начале XIX века Дж. Госс (John Goss ), экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении .

Таким образом, к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении (все гибриды первого поколения похожи друг на друга), расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников, указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя .

Методы и ход работы Менделя

  • Мендель изучал, как наследуются отдельные признаки.
  • Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования .
  • Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме - самоопылитель , но на нём легко проводить искусственную гибридизацию.
  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей .

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Понятие гомозиготности было введено позднее У. Бэтсоном в 1902 году .

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования . Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот .

Скрещиванием организмов двух чистых линий , различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание .

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет - в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Закон независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) - при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом (нуклеопротеидных структур в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи) гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иогансеном).
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой - от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.
  5. Родительские организмы принадлежат к чистым линиям, то есть действительно гомозиготны по изучаемому гену (АА и аа).
  6. Признак действительно моногенный

Условия выполнения закона независимого наследования

  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).

Условия выполнения закона чистоты гамет

  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

РЕФЕРАТ

«Законы Менделя»

Работу выполнила Айрапетян Марина

Группа 36, факультет компьютерных технологий и прикладной математики, спец. 061800- Математические методы в экономике

Работу проверил Шаповаленко В.В.

Краснодар

Введение. 3

История. 3

Методы и ход работы Менделя. 4

Закон единообразия гибридов первого поколения. 6

Закон расщепления признаков. 7

Закон независимого наследования признаков. 10

Основные положения теории наследственности Менделя. 12

Условия выполнения законов Менделя. 12

Значение работ Менделя. 13


Введение

Основные законы наследуемости были описаны более века назад чешским монахом Грегором Менделем (1822-1884), преподававшим физику и естественную историю в средней школе г. Брюнна (г. Брно).

Законы Менделя - это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет».

Мендель занимался селекционированием гороха, и именно гороху, научной удаче и строгости опытов Менделя мы обязаны открытием основных законов наследуемости: закона единообразия гибридов первого поколения, закона расщепления и закона независимого комбинирования.

История

Следует отметить, что сам Грегор Мендель не формулировал свои выводы в качестве «законов» и не присваивал им никаких номеров. Более того, многие «открытые» им факты были давно и хорошо известны, на что сам Мендель указывает в своей работе.

Некоторые исследователи выделяют не три, а два закона Менделя. Например, в руководстве «Генетика человека» Ф. Фогеля и А. Мотульски излагаются три закона, а в книге Л. Эрман и П. Парсонса «Генетика поведения и эволюция» – два. При этом некоторые ученые объединяют первый и второй законы, считая, что первый закон является частью второго и описывает генотипы и фенотипы потомков первого поколения (F1). Другие исследователи объединяют в один второй и третий законы, полагая, что «закон независимого комбинирования» есть в сущности «закон независимости расщепления», протекающего одновременно по разным парам аллелей. Однако в отечественной литературе речь идет обычно о трех законах Менделя. Эту точку зрения принимаем и мы.

К середине XIX века было открыто явление доминантности (О.Саржэ, Ш.Ноден и др.). Часто все гибриды первого поколения похожи друг на друга (единообразие гибридов) и по данному признаку все они идентичны одному из родителей (его признак доминирует). Они же показали, что рецессивные (не проявляющиеся у гибридов первого поколения) признаки не исчезают; при скрещивании гибридов между собой во втором поколении часть гибридов имеет рецессивные признаки («возврат к родительским формам»). Было также показано (Дж. Госс и др.), что среди гибридов второго поколения с доминантным признаком встречаются разные - дающие и не дающие расщепление при самоопылении. Однако никто из этих исследователей не смог дать своим наблюдениям теоретическое обоснование.

Главной заслугой Менделя было создание теории наследственности, которая объясняла изученные им закономерности наследования.

Методы и ход работы Менделя

Мендель изучал, как наследуются отдельные признаки.

Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два четко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило четко установить общие закономерности наследования.

Мендель спланировал и провел масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученных гибридов скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме самоопылитель, но легко проводить искусственную гибридизацию. Горох был удобен по различным соображениям. Потомство этого растения обладает рядом чётко различимых признаков - зелёный или жёлтый цвет семядолей, гладкие или, напротив, морщинистые семена, вздутые или перетянутые бобы, длинная или короткая стеблевая ось соцветия и так далее. Переходных, половинчатых "смазанных" признаков не было. Всякий раз можно было уверенно говорить "да" или "нет", "или - или", иметь дело с альтернативой. А потому и оспаривать выводы Менделя, сомневаться в них не приходилось.

Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Г. Мендель не был пионером в области изучения результатов скрещивания растений. Такие эксперименты проводились и до него, с той лишь разницей, что скрещивались растения разных видов. Потомки подобного скрещивания (поколение F 1) были стерильны, и, следовательно, оплодотворения и развития гибридов второго поколения (при описании селекционных экспериментов второе поколение обозначается F2) не происходило. Другой особенностью доменделевских работ было то, что большинство признаков, исследуемых в разных экспериментах по скрещиванию, были сложны как по типу наследования, так и с точки зрения их фенотипического выражения.

Гениальность (или удача) Менделя заключалась в том, что в своих экспериментах он не повторил ошибок предшественников. Как писала английская исследовательница Ш. Ауэрбах, «успех работы Менделя по сравнению с исследованиями его предшественников объясняется тем, что он обладал двумя существенными качествами, необходимыми для ученого: способностью задавать природе нужный вопрос и способностью правильно истолковывать ответ природы». Во-первых, в качестве экспериментальных растений Мендель использовал разные сорта декоративного гороха внутри одного рода Pisum. Поэтому растения, развившиеся в результате подобного скрещивания, были способны к воспроизводству. Во -вторых, в качестве экспериментальных признаков Мендель выбрал простые качественные признаки типа «или /или» (например, кожура горошины может быть либо гладкой, либо сморщенной), которые, как потом выяснилось, контролируются одним геном. В-третьих, подлинная удача (или гениальное предвидение) Менделя заключалось в том, что выбранные им признаки контролировались генами, содержавшими истинно доминантные аллели. И, наконец, интуиция подсказала Менделю, что все категории семян всех гибридных поколений следует точно, вплоть до последней горошины, пересчитывать, не ограничиваясь общими утверждениями, суммирующими только наиболее характерные результаты (скажем, таких–то семян больше, чем таких-то).

Закон единообразия гибридов первого поколения

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования - наследование групп крови системы АВ0 у человека, где А и В - доминантные гены, а 0 - рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 - вторую, ВВ и В0 - третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Грегор Мендель в XIX веке, проводя исследования на горохе посевном, выявил три основные закономерности наследования признаков, которые носят название трех законов Менделя. Первые два закона касаются моногибридного скрещивания (когда берут родительские формы, отличающиеся только по одному признаку), третий закон был выявлен при дигибридном скрещивании (родительские формы исследуются по двум разным признакам).

Первый закон Менделя. Закон единообразия гибридов первого поколения

Мендель взял для скрещивания растения гороха, отличающиеся по одному признаку (например, по окраске семян). Одни имели желтые семена, другие - зеленые. После перекрестного опыления получаются гибриды первого поколения (F 1). Все они имели желтый цвет семян, т. е. были единообразны. Фенотипический признак, определяющий зеленый цвет семян, исчез.

Второй закон Менделя. Закон расщепления

Мендель посадил гибриды первого поколения гороха (которые все были желтыми) и позволил им самоопыляться. В итоге были получены семена, представляющие собой гибриды второго поколения (F 2). Среди них уже встречались не только желтые, но и зеленые семена, т. е. произошло расщепление. При этом отношение желтых к зеленым семенам было 3: 1.

Появление зеленых семян во втором поколении доказывало то, что этот признак не исчезал или растворялся у гибридов первого поколения, а существовал в дискретном состоянии, но просто был подавлен. В науку были введены понятия о доминантном и рецессивном аллеле гена (Мендель называл их по-другому). Доминантный аллель подавляет рецессивный.

У чистой линии желтого гороха два доминантных аллеля - AA. У чистой линии зеленого гороха два рецессивных аллеля - aa. При мейозе в каждую гамету попадает только один аллель. Таким образом, горох с желтыми семенами образует только гаметы, содержащие аллель A. Горох с зелеными семенами образует гаметы, содержащие аллель a. При скрещивании они дают гибриды Aa (первое поколение). Поскольку доминантный аллель в данном случае полностью подавляет рецессивный, то и наблюдался желтый цвет семян у всех гибридов первого поколения.

Гибриды первого поколения уже дают гаметы A и a. При самоопылении, случайно комбинируясь между собой, они образуют генотипы AA, Aa, aa. Причем гетерозиготный генотип Aa будет встречаться в два раза чаще (так как Aa и aA), чем каждый гомозиготный (AA и aa). Таким образом получаем 1AA: 2Aa: 1aa. Поскольку Aa дает желтый цвет семян как и AA, то выходит, что на 3 желтых приходится 1 зеленый.

Третий закон Менделя. Закон независимого наследования разных признаков

Мендель провел дигибридное скрещивание, т. е. взял для скрещивания растения гороха, отличающиеся по двум признакам (например, по цвету и морщинистости семян). Одна чистая линия гороха имела желтые и гладкие семена, а вторая - зеленые и морщинистые. Все их гибриды первого поколения имели желтые и гладкие семена.

Во втором поколении ожидаемо произошло расщепление (у части семян проявился зеленый цвет и морщинистость). Однако при этом наблюдались растения не только с желтыми гладкими и зелеными морщинистыми семенами, но и с желтыми морщинистыми, а также зелеными гладкими. Другими словами, произошла перекомбинация признаков, говорящая о том, что наследование цвета и формы семян происходит независимо друг от друга.

Действительно, если гены цвета семян находится в одной паре гомологичных хромосом, а гены, определяющие форму, - в другой, то при мейозе они могут независимо друг от друга комбинироваться. В результате гаметы могут содержать как аллели желтого цвета и гладкой формы (AB), так и желтого цвета и морщинистой формы (Ab), а также зеленой гладкой (aB) и зеленой морщинистой (ab). При комбинации гамет между собой с разной вероятностью образуется девять типов гибридов второго поколения: AABB, AABb, AaBB, AaBb, AAbb, Aabb, aaBB, aaBb, aabb. При этом по фенотипу будет наблюдаться расщепление на четыре типа в отношении 9 (желтых гладких) : 3 (желтых морщинистых) : 3 (зеленых гладких) : 1 (зеленых морщинистых). Для наглядности и подробного анализа строят решетку Пеннета.

Третий закон Менделя (независимого наследования признаков) – при скрещивании двух гомозиготных особей, отлича­ющихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Закон проявляется, как правило, для тех пар признаков, гены которых находятся вне гомологичных хромосомах. Если обозначить буквой и число аллельных пар в негомологичных хромосомах, то число фенотипических классов будет определяться формулой 2n, а число генотипических классов — 3n. При неполном доминировании количество фенотипических и генотипических классов совпадает.

Условия независимого наследования и комбинирования неаллельных генов.

Изучая рас­щепление при дигибридном скрещива­нии, Мендель обнаружил, что призна­ки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбиниро­вания признаков, формулируется сле­дующим образом: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтерна­тивных признаков, во втором поколе­нии F 2 ) наблюдается независимое на­следование и комбинирование призна­ков, если гены, определяющие их, рас­положены в различных гомологичных хромосомах. Это возможно, так как при мейозе распределение (комбини­рование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению по­томков, несущих признаки в сочета­ниях, не свойственных родительским и прародительским особям. Вступают в брак дигетерозиготы по окраске глаз и способности лучше владеть правой рукой (АаВ b ). При формировании гамет аллель А может оказаться в одной гамете как с аллелем В, так и с аллелем b . Точно так же аллель а может попасть в одну гамету либо с аллелем В, либо с аллелем b . Следовательно, у дигетерозиготной особи образуются четыре возможные комбинации генов в гаметах: АВ, А b , аВ, а b . Всех типов гамет будет поров­ну (по 25%).

Это несложно объяснить поведением хромосом при мейозе. Негомологич­ные хромосомы при мейозе могут ком­бинироваться в любых сочетаниях, поэтому хромосома, несущая аллель А, равновероятно может отойти в гаме­ту как с хромосомой, несущей аллель В так и с хромосомой, несущей аллель b . Точно так же хромосома, несущая аллель а, может комбинироваться как с хромосомой, несущей аллель В, так и с хромосомой, несущей аллель b. Итак, дигетерозиготная особь обра­зует 4 типа гамет. Естественно, что при скрещивании этих гетерозигот­ных особей любая из четырех типов гамет одного родителя может быть оплодотворена любой из четырех ти­пов гамет, сформированных другим родителем, т. е. возможны 16 комби­наций. Такое же число комбинаций следует ожидать по законам комбина­торики.

При подсчете фенотипов, записанных на решетке Пеннета, оказывается, что из 16 возможных комбинаций во втором поколении в 9 реализуются два доминантных признака (АВ, в на­шем примере - кареглазые правши), в 3-первый признак доминантный, второй рецессивный b , в нашем при­мере - кареглазые левши), еще в 3 - первый признак рецессивный, вто­рой - доминантный (аВ, т. е. голубо­глазые правши), а в одной - оба при­знака рецессивные b , в данном слу­чае - голубоглазый левша). Произош­ло расщепление по фенотипу в соот­ношении 9:3:3:1.

Если при дигнбридном скрещивании во втором поколении последовательно провести подсчет полученных особей по каждому признаку в отдельности до результат получится такой же, как при моногчбридном скрещивании, т.e. 3: 1.

В нашем примере при расщеплении по окраске глаз получается соотно­шение: кареглазых 12/16, голубогла­зых 4/16, по другому признаку - правшей 12/16, левшей 4/16, т. е. известное соотношение 3:1.

Дигетерозигота образует четыре ти­па гамет, поэтому при скрещивании с рецессивной гомозиготой наблюдается четыре типа потомков; при этом рас­щепление как по фенотипу, так и по генотипу происходит в соотношении 1:1:1:1.

При подсчете фенотипов, получен­ных в этом случае, наблюдается рас­щепление в соотношении 27: 9: 9: 9: :3: 3: 3: 1. Это следствие того, что принятые нами во внимание признаки: способность лучше владеть правой рукой, окраска глаз и резус-фактор контролируются генами, локализован­ными в разных хромосомах, и вероят­ность встречи хромосомы, несущей ген А, с хромосомой, несущей ген В или R , зависит полностью от случайности, так как та же хромосома с геном А в равной степени могла встретиться с хромосомой, несущей ген b или r.

В более общей форме, при любых скрещиваниях, расщепление по фено­типу происходит по формуле (3 + 1) n , где п - число пар признаков, приня­тых во внимание при скрещивании.

Цитологические основы и универсальность законов Менделя.

1) парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака)

2) особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным пблюсам клетки, а затем и в разные гаметы)

3) особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному гену из каждой аллельной пары)

Менделирующие признаки человека.

Доминантные признаки Рецессивные признаки
Волосы: темные вьющиеся не рыжие Волосы: светлые прямые рыжие
Глаза: карие большие Глаза:

маленькие

Близорукость Нормальное зрение
Ресницы длинные Ресницы короткие
Нос с горбинкой Прямой нос
Свободная мочка уха Приросшая мочка уха
Широкая щель между резцами Узкая щель между резцами или ее отсутствие
Полные губы Тонкие губы
Наличие веснушек Отсутствие веснушек
Шестипалость Нормальное строение конечностей
Лучшее владение правой рукой Лучшее владение левой рукой
Наличие пигмента Альбинизм
Положительный резус-фактор Отрицательный резус-фактор

Данный закон утверждает, что скрещивание особей, различающихся по данному признаку (гомозиготных по разным аллелям), дает генетически однородное потомство (поколение F 1), все особи которого гетерозиготны. Все гибриды F 1 могут иметь при этом либо фенотип одного из родителей (полное доминирование), как в опытах Менделя, либо, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения F 1, могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и aа) все их потомки одинаковы по генотипу (гетерозиготны – Аа), а значит, и по фенотипу.

2.3.Закон расщепления (второй закон Менделя)

Этот закон называют законом (независимого) расщепления. Суть его состоит в следующем. Когда у организма, гетерозиготного по исследуемому признаку, формируются половые клетки – гаметы, то одна их половина несет один аллель данного гена, а вторая – другой. Поэтому при скрещивании таких гибридов F 1 между собой среди гибридов второго поколения F2 в определенных соотношениях появляются особи с фенотипами как исходных родительских форм, так и F 1.

В основе этого закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов F 1 гамет двух типов, в результате чего среди гибридов F2 выявляются особи трех возможных генотипов в соотношении 1АА: 2 Аа: 1аа. Иными словами, «внуки» исходных форм – двух гомозигот, фенотипически отличных друг от друга, дают расщепление по фенотипу в соответствии со вторым законом Менделя.

Однако это соотношение может меняться в зависимости от типа наследования. Так, в случае полного доминирования выделяются 75% особей с доминантным и 25% с рецессивным признаком, т.е. два фенотипа в отношении 3:1. При неполном доминировании и кодоминировании 50% гибридов второго поколения (F2) имеют фенотип гибридов первого поколения и по 25% – фенотипы исходных родительских форм, т.е. наблюдается расщепление 1:2:1 .

2.4.Закон независимого комбинирования (наследования) признаков (третий закон Менделя)

Этот закон говорит о том, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков первого поколения (т.е. в поколении F2) в определенном соотношении появляются особи с новыми (по сравнению с родительскими) комбинациями признаков. Например, в случае полного доминирования при скрещивании исходных форм, различающихся по двум признакам, в следующем поколении (F2) выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1. При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два – новые. Данный закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом. Так, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения (F 1) 4 типов гамет (АВ, Ав, аВ, ав), а после образования зигот – к закономерному расщеплению по генотипу и, соответственно, по фенотипу в следующем поколении (F2).

Парадоксально, но в современной науке огромное внимание уделяется не столько самому третьему закону Менделя в его исходной формулировке, сколько исключениям из него. Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, т.е. располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы. Научная интуиция Менделя подсказала ему, какие признаки должны быть выбраны для его дигибридных экспериментов, – он выбрал несцепленные признаки. Если бы он случайно выбрал признаки, контролируемые сцепленными генами, то его результаты были бы иными, поскольку сцепленные признаки наследуются не независимо друг от друга.

С чем же связана важность исключений из закона Менделя о независимом комбинировании? Дело в том, что именно эти исключения позволяют определять хромосомные координаты генов (так называемый локус).

В случаях когда наследуемость определенной пары генов не подчиняется третьему закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосоме в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования, называется методом сцепления. Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений – явление кроссинговера, приводящего к перекомбинации (рекомбинации) генов. Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками.

Кроссинговер – процесс вероятностный, а вероятность того, произойдет или не произойдет разрыв хромосомы на данном конкретном участке, определяется рядом факторов, в частности физическим расстоянием между двумя локусами одной и той же хромосомы. Кроссинговер может произойти и между соседними локусами, однако его вероятность значительно меньше вероятности разрыва (приводящего к обмену участками) между локусами с большим расстоянием между ними.

Данная закономерность используется при составлении генетических карт хромосом (картировании). Расстояние между двумя локусами оценивается путем подсчета количества рекомбинаций на 100 гамет. Это расстояние считается единицей измерения длины гена и называется сентиморганом в честь генетика Т. Моргана, впервые описавшего группы сцепленных генов у плодовой мушки дрозофилы – любимого объекта генетиков. Если два локуса находятся на значительном расстоянии друг от друга, то разрыв между ними будет происходить так же часто, как при расположении этих локусов на разных хромосомах.

Используя закономерности реорганизации генетического материала в процессе рекомбинации, ученые разработали статистический метод анализа, называемый анализом сцепления.

Законы Менделя в их классической форме действуют при наличии определенных условий. К ним относятся:

1) гомозиготность исходных скрещиваемых форм;

2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза; одинаковой жизнеспособностью гамет всех типов; равной вероятностью встречи любых гамет при оплодотворении);

3) одинаковая жизнеспособность зигот всех типов.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (т.е. 100-процентной частотой проявления анализируемого признака; 100% пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью (т.е. постоянной степенью выраженности признака); постоянная экспрессивность подразумевает, что фенотипическая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.

Знание и применение законов Менделя имеет огромное значение в медико-генетическом консультировании и определении генотипа фенотипически «здоровых» людей, родственники которых страдали наследственными заболеваниями, а также в выяснении степени риска развития этих заболеваний у родственников больных.