Корреляционная функция. Взаимная корреляционная функция

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Корреляционная функция. Взаимная корреляционная функция. Линейное преобразование случайного процесса

1. Корреляционная функция

При исследовании случайных сигналов широко используется теория случайных процессов, основанная на использовании моментов не выше второго порядка. Эта теория получила название корреляционной теории.

Определение . Корреляционной функцией R x (t 1 ,t 2) случайного процесса X(t) называется корреляционный момент центрированного случайного процесса в двух сечениях t = t 1 и t = t 2:

Корреляционная функция обладает всеми свойствами корреляционного момента. Часто вместо корреляционной функции рассматривается нормированная корреляционная функция x (t 1 ,t 2):

которая является безразмерной величиной.

В дальнейшем будем рассматривать только центрированные случайные процессы. Если процесс будет не центрированным, то об этом будет специально оговорено.

Корреляционная функция R x (t 1 ,t 2) случайного процесса X(t) называется еще автокорреляционной функцией.

Для стационарных процессов (в широком и узком смысле) автокорреляционная функция имеет вид

R x (t 1 ,t 2) = R x (0, t 2 - t 1) = R x () ,

где = t 2 - t 1.

Можно определить и временную автокорреляционную функцию следующим образом

где - реализация центрированного случайного процесса X(t). Для эргодических процессов = R x ().

Ниже приведен обычный график автокорреляционной функции

2. Свойства автокорреляционных функций

Автокорреляционные функции играют большую роль в представлении случайных процессов и при анализе систем, оперирующих со случайными входными сигналами. Поэтому приведем некоторые свойства автокорреляционных функций стационарных процессов.

1. R x (0) = M(X 2 (t)) = D x (t).

2. R x () = R x (-). Автокорреляционная функция является четной функцией. Это свойство симметрии графика функции исключительно полезно при вычислении автокорреляционной функции, так оно означает, что вычисления можно производить только для положительных, а для отрицательных можно их определить, используя свойство симметрии.

3.R x () R x (0). Наибольшее значение автокорреляционной функции, как правило, принимает при = 0.

Пример . В случайном процессе X(t) = A Cost, где А - случайная величина с характеристиками: М(А) = 0, D(A) = 2 , найти М(Х), D(Х) и R x (t 1 ,t 2).

Решение . Найдем математическое ожидание и дисперсию случайного процесса:

М(Х) = М(A Cost) = Cost М(А) = 0,

D(Х) = М((A Cost-0) 2) = М(А 2) Cos 2 t = 2 Cos 2 t.

Теперь найдем автокорреляционную функцию

R x (t 1 ,t 2) = М(А Cost 1 А Cost 2) =

М(А 2) Cost 1 Cost 2 = 2 Cost 1 Cost 2 .

3. Взаимная корреляционная функция

Входной Х(t) и выходной Y(t) случайные сигналы системы можно рассматривать как двумерный векторный случайный процесс Введем числовые характеристики этого процесса.

Математическое ожидание и дисперсия векторного случайного процесса определяется как математическое ожидание и дисперсия его компонент:

Корреляционную функцию векторного процесса введем с помощью матрицы второго порядка:

где R xy (t 1 , t 2) взаимная корреляционная функция случайных процессов X(t) иY(t), определяемая следующим образом

Из определения взаимной корреляционной функции вытекает, что

R xy (t 1 ,t 2) = R yx (t 2 ,t 1).

Нормированной взаимной корреляционной функцией двух случайных процессов X(t), Y(t) называется функция

Определение. Если взаимная корреляционная функция случайных процессов X(t) и Y(t) равна нулю:

то случайные процессы называются некоррелироваными.

Для суммы случайных процессов X(t) и Y(t) автокорреляционная функция равна

R x + y (t 1 ,t 2) = R x (t 1 ,t 2) + R xy (t 1 ,t 2) + R yx (t 1 ,t 2) + R y (t 1 ,t 2).

Для некоррелированных случайных процессов X(t) и Y(t) автокорреляционная функция суммы случайных процессов равна сумме автокорреляционных функций

R x+y (t 1 ,t 2) = R x (t 1 ,t 2) + R y (t 1 ,t 2),

а значит и дисперсия суммы случайных процессов равна сумме дисперсий:

D x+y (t) = D x (t) + D y (t).

Если где X 1 (t), ..., X n (t) - некоррелированные случайные процессы, то и

При выполнении различных преобразований со случайными процессами часто удобно записывать их в комплексном виде.

Комплексным случайным процессом называется случайный процесс вида

Z(t) = X(t) + i Y(t),

где X(t) , Y(t) - действительные случайные процессы.

Математическое ожидание, корреляционная функция и дисперсия комплексного случайного процесса определяются следующим образом:

M(Z) = M(X) + i M(Y),

где знак * обозначает комплексное сопряжение;

Пример . Пусть случайный процесс, где - постоянная величина, Здесь А и - независимые случайные величины, причем М(А) = m A , D(A) = 2 , а - равномерно распределенная случайная величина на интервале . Определить математическое ожидание, корреляционную функцию и дисперсию комплексного случайного процесса Z(t).

Решение . Найдем математическое ожидание:

Используя равномерное распределение случайной величины на интервале , имеем

Автокорреляционная функция случайного процесса Z(t) равна

Отсюда имеем

D z (t 1) = R z (t 1, t 1) = 2 + m A 2 .

Из полученных результатов следует, что случайный процесс Z(t) стационарный в широком смысле.

4. Линейное преобразование случайного процесса

При решении многих практических задач радиотехники приходится определять характеристики случайного процесса на выходе линейной системы. Линейная система осуществляет линейные операции над входным случайным процессом. Это значит, что если на вход системы поступает случайный процесс X(t), то на выходе этот процесс преобразуется в случайный процесс

Y(t) = A ,

где А - оператор (преобразование), обладающий свойствами:

A [ 1 X 1 (t) + 2 X 2 (t)] = 1 A + 2 .

Здесь постоянные величины.

Примеры линейных операторов

Оператор умножения на неслучайную функцию f(t):

Y(t) = A = f(t) X(t).

Определим математическое ожидание и автокорреляционную функцию случайного процесса Y(t):

m y (t) = M(Y(t)) = M(f(t) X(t)) = f(t) M(X(t)),

Оператор дифференцирования:

Представив производную в виде предела

и применив операцию математического ожидания к правой и левой части равенства, получаем

Оператор интегрирования:

Представим интеграл в виде интегральной суммы

и применим к этому равенству операцию математического ожидания. Тогда имеем

Автокорреляционная функция случайного процесса легко определяется:

5. Преобразование Фурье

При анализе различных линейных систем широко используются преобразования Фурье и Лапласа, позволяющие достаточно просто выполнить необходимые вычисления. Основная причина такого упрощения заключается в замене процедуры свертки, используемой при анализе системы во временной области на обычную операцию умножения частотных характеристик и функций, используемых при анализе в частотной области.

Пусть у нас имеется сигнал (неслучайный, который представляет собой функцию времени) f(t), измеряемый в вольтах. Тогда

Преобразование Фурье сигнала f(t) (иногда под преобразованием Фурье понимают сопряженную величину F*()), которое имеет размерность и определяет относительные амплитуды и фазы незатухающих гармонических составляющих. Таким образом, амплитудное соотношение в преобразовании Фурье характеризует плотность распределения амплитуд по частоте, а значит определяет распределение энергии по спектру. Спектром любого колебательного процесса называется функция, описывающая распределение амплитуд гармоник по различным частотам. Спектр показывает, какого рода колебания по частоте преобладают в данном процессе и какова его внутренняя структура.

Для преобразования Фурье разработана теория, суть которой кратко заключается в следующем.

Вводится пространство L 2 (-,) - пространство суммируемых в квадрате функций, то есть таких функций, для которых

Если f(t) - сигнал, то это условие означает конечность мощности этого сиг-

нала. Для каждой функции f L 2 (-,) существует предел в среднем функции

при Т и этот предел обозначается

причем F() L 2 (-,). Существует и обратное преобразование

Для двух преобразований Фурье

выполняет обобщенное равенство Парсеваля:

В частности, получаем обычное равенство Парсеваля

6. Спектральная плотность стационарного случайного процесса

Непосредственное применение преобразования Фурье для реализации случайного процесса x(t) неприменимо, так как это преобразование не существует. С целью использования преобразования Фурье при анализе стационарного (центрированного) случайного процесса необходимо видоизменить реализацию процесса таким образом, чтобы преобразование Фурье существовало для каждой реализации. Один из таких способов заключается во введении усеченного процесса X T (t):

Этот усеченный процесс удовлетворяет требованию существования преобразования Фурье для любой реализации, так как

Это соотношение означает, что оно выполняется для любой реализации случайного процесса X T (t). Теперь для усеченного процесса можно ввести преобразование Фурье, понимая под этим преобразование Фурье любой его реализации:

Целью дальнейшего является доказательство того факта, что в пределе при Т существует, если даже не существует преобразование Фурье для какой-либо реализации.

Первый этап доказательства состоит в применении равенства Парсеваля:

Заметим, что

(2)

Усредним теперь во времени левую часть равенства (1) с целью получения средней мощности случайного процесса

Левая часть полученного равенства представляет собой квадрат эффективного значения функции X T (t). Кроме того, для эргодического процесса при Т эта величина приближается к значению среднего квадрата случайного процесса M(X 2 (t)).

В соотношении (3) нельзя перейти к пределу при Т, так как не существует.

Поэтому сначала возьмем математическое ожидание левой и правой частей этого равенства

и перепишем его, устремив Т. Тогда

Для стационарного процесса

Поэтому получаем соотношение

Величина

называется спектральной плотностью случайного процесса. Укажем, что после выполнения операции усреднения по множеству реализаций (по ансамблю) справедлив переход к пределу при Т. Если X(t) - напряжение, то ([X] = B), S x () имеет размерность а интеграл от S x () в соответствии с (4) определяет средний квадрат этого напряжения, то есть

Более наглядная физическая интерпретация спектральной плотности может быть дана путем анализа средней мощности. Если X(t) - флуктуационное напряжение или ток, протекающий через резистор сопротивления 1 Ом, то М(Х 2) есть средняя мощность, рассеиваемая этим резистором.

Спектральную плотность можно интерпретировать как среднюю мощность, сосредоточенную в пределах полосы частот шириной 1 Гц.

Вследствие этого спектральную плотность часто называют спектром плотности мощности.

От двусторонней спектральной плотности случайного процесса можно перейти к односторонней, где фигурирует обычно частота f. С этой целью запишем

и в первом интеграле сделаем замену переменной, положив = 2f, а во втором - = - 2f.

Так как в силу соотношения (2) функция S x () = S x (-), то есть является четной функцией, то

Представим интеграл в этом соотношении в виде интегральной суммы

где D k - дисперсия случайного процесса на k-ой гармонике. Отсюда получаем, что G x (f) = D k /f k - дисперсия (мощность) k-ой гармоники, отнесенная к полосе частот f k , то есть спектральная плотность дисперсии (мощности) случайного процеса.

Пример . Стационарный случайный процесс имеет двухстороннюю спектральную плотность

Определить среднюю мощность процесса, рассеиваемую на резисторе сопротивлением 1 Ом в диапазоне изменения от -4 до 4.

Решение Средняя мощность процесса M(X 2 (t)) для указанного диапазона равна:

автокорреляционная функция случайный процесс

В радиотехнике часто используется понятие "белого шума". Под "белым шумом" принято понимать стационарный случайный процесс, спектральная плотность которого постоянна на всех частотах. Термин "белый шум" образно подчеркивает аналогию со светом, у которого в пределах видимого диапазона частот интенсивность всех спектральных составляющих примерно одинакова. Белый шум является математической моделью процесса, который реально в природе не существует, так как мощность его равна бесконечности. Однако это удобная модель для описания широкополосных случайных процессов систем, в полосе пропускания которых спектр можно считать постоянным.

Размещено на Allbest

Подобные документы

    Построение и изучение математической модели случайного стационарного эргодического процесса с вероятностными характеристиками: ожидание и дисперсия. Построение графиков динамики изменения эмпирических данных и гистограмм распределения для всех выборок.

    курсовая работа , добавлен 18.03.2012

    Недостатки традиционного Фурье-преобразования. Оконное, дискретное преобразование, оконные функции и их виды. Непрерывное вейвлет-преобразование, материнские вейвлеты. Кратномасштабный анализ и разложение сигнала по разным ортонормированным базисам.

    курсовая работа , добавлен 23.10.2009

    Порядок расчета установившегося случайного процесса в системе управления. Статистическая линеаризация нелинейной части системы. Расчет математического ожидания, среднеквадратического отклонения сигнала ошибки. Решение уравнений и построение зависимостей.

    контрольная работа , добавлен 23.02.2012

    Определение нижней и верхней цены игры, заданной платежной матрицей. Имеет ли игра седловую точку? Решение геометрически задачи линейного программирования. Построение графа состояний случайного процесса. Предельные вероятности для заданной системы.

    контрольная работа , добавлен 04.02.2011

    Степень тесноты и характера направления зависимости между признаками. Парная линейная корреляционная зависимость, ее корреляционно-регрессионный анализ. Исследование связи между одним признаком-фактором и одним признаком-результатом, шкала Чеддока.

    методичка , добавлен 15.11.2010

    Передаточная функция разомкнутой системы "ЛА-САУ". Выбор частоты среза для желаемой ЛАХ и ее построение. Синтез корректирующего звена. Расчет переходного процесса для замкнутой скорректированной и не скорректированной автоматической системы управления.

    курсовая работа , добавлен 10.12.2012

    Гетероскедастичность случайного возмущения: основные причины и последствия. Тесты на наличие или отсутствие гетероскедастичности. Тест ранговой корреляции Спирмена. Тест Голдфеда–Квандта. Тест Глейзера. Количественные характеристики вектора возмущений.

    реферат , добавлен 06.01.2015

    Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.

    контрольная работа , добавлен 10.11.2010

    Общая характеристика и порядок определения коэффициента корреляции, методика и этапы его оценки. Описание автокорреляционных функций. Сущность критерия Дарбина-Уотсона. Примеры практических расчетов с помощью макроса Excel "Автокорреляционная функция".

    курсовая работа , добавлен 03.07.2010

    Системы с положительной и отрицательной обратной связью. Собственные динамические свойства системы. Стандартный сигнал простого вида. Единичная ступенчатая функция. График переходного процесса. Значение постоянной времени. Сохранение полезных сигналов.

Свойства автокорреляционных функций

Автокорреляционные функции играют большую роль в представлении случайных процессов и при анализе систем, оперирующих со случайными входными сигналами. Поэтому приведем некоторые свойства автокорреляционных функций стационарных процессов.

1. R x (0) = M(X 2 (t)) = D x (t).

2. R x (t) = R x (-t). Автокорреляционная функция является четной функцией. Это свойство симметрии графика функции исключительно полезно при вычислении автокорреляционной функции, так оно означает, что вычисления можно производить только для положительных t, а для отрицательных t можно их определить, используя свойство симметрии.

3.½R x (t)½£ R x (0). Наибольшее значение автокорреляционной функции, как правило, принимает при t = 0.

Пример . В случайном процессе X(t) = A Coswt, где А – случайная величина с характеристиками: М(А) = 0, D(A) = s 2 , найти М(Х), D(Х) и R x (t 1 ,t 2).

Решение . Найдем математическое ожидание и дисперсию случайного процесса:

М(Х) = М(A Coswt) = Coswt × М(А) = 0,

D(Х) = М((A Coswt-0) 2) = М(А 2) Cos 2 wt = s 2 Cos 2 wt.

Теперь найдем автокорреляционную функцию

R x (t 1 ,t 2) = М(А Coswt 1 × А Coswt 2) =

М(А 2) Coswt 1 × Coswt 2 = s 2 Coswt 1 × Coswt 2 .

Входной Х(t) и выходной Y(t) случайные сигналы системы можно рассматривать как двумерный векторный случайный процесс Введем числовые характеристики этого процесса.

Математическое ожидание и дисперсия векторного случайного процесса определяется как математическое ожидание и дисперсия его компонент:

Корреляционную функцию векторного процесса введем с помощью матрицы второго порядка:

где R xy (t 1 , t 2) взаимная корреляционная функция случайных процессов X(t) иY(t), определяемая следующим образом

Из определения взаимной корреляционной функции вытекает, что

R xy (t 1 ,t 2) = R yx (t 2 ,t 1).

Нормированной взаимной корреляционной функцией двух случайных процессов X(t), Y(t) называется функция


Определение. Если взаимная корреляционная функция случайных процессов X(t) и Y(t) равна нулю:

то случайные процессы называются некоррелироваными.

Для суммы случайных процессов X(t) и Y(t) автокорреляционная функция равна

R x + y (t 1 ,t 2) = R x (t 1 ,t 2) + R xy (t 1 ,t 2) + R yx (t 1 ,t 2) + R y (t 1 ,t 2).

Для некоррелированных случайных процессов X(t) и Y(t) автокорреляционная функция суммы случайных процессов равна сумме автокорреляционных функций

R x+y (t 1 ,t 2) = R x (t 1 ,t 2) + R y (t 1 ,t 2),



а значит и дисперсия суммы случайных процессов равна сумме дисперсий:

D x+y (t) = D x (t) + D y (t).

Если где X 1 (t), ..., X n (t) – некоррелированные случайные процессы, то и

При выполнении различных преобразований со случайными процессами часто удобно записывать их в комплексном виде.

Комплексным случайным процессом называется случайный процесс вида

Z(t) = X(t) + i Y(t),

где X(t) , Y(t) - действительные случайные процессы.

Математическое ожидание, корреляционная функция и дисперсия комплексного случайного процесса определяются следующим образом:

M(Z) = M(X) + i M(Y),

где знак * обозначает комплексное сопряжение;

Пример . Пусть случайный процесс , где w - постоянная величина, Здесь А и j - независимые случайные величины, причем М(А) = m A , D(A) = s 2 , а j - равномерно распределенная случайная величина на интервале . Определить математическое ожидание, корреляционную функцию и дисперсию комплексного случайного процесса Z(t).

Решение . Найдем математическое ожидание:

Используя равномерное распределение случайной величины j на интервале , имеем

Автокорреляционная функция случайного процесса Z(t) равна

Отсюда имеем

D z (t 1) = R z (t 1, t 1) = s 2 + m A 2 .

Из полученных результатов следует, что случайный процесс Z(t) стационарный в широком смысле.

Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной). Обобщая формулу (6.1.1) автокорреляционной функции на два различных сигнала s(t) и u(t), получаем следующее скалярное произведение сигналов:

B su () =s(t) u(t+) dt. (6.2.1)

Взаимная корреляция сигналов характеризует определенную корреляцию явлений и физических процессов, отображаемых данными сигналами, и может служить мерой “устойчивости” данной взаимосвязи при раздельной обработке сигналов в различных устройствах. Для конечных по энергии сигналов ВКФ также конечна, при этом:

|B su ()|  ||s(t)||||u(t)||,

что следует из неравенства Коши-Буняковского и независимости норм сигналов от сдвига по координатам.

При замене переменной t = t- в формуле (6.2.1), получаем:

B su () =s(t-) u(t) dt = u(t) s(t-) dt = B us (-).

Отсюда следует, что для ВКФ не выполняется условие четности, B su ()  B su (-), и значения ВКФ не обязаны иметь максимум при  = 0.

Рис. 6.2.1. Сигналы и ВКФ.

Это можно наглядно видеть на рис. 6.2.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (6.2.1) с постепенным увеличением значений  означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+)). При =0 сигналы ортогональны и значение B 12 ()=0. Максимум В 12 () будет наблюдаться при сдвиге сигнала s2(t) влево на значение =1, при котором происходит полное совмещение сигналов s1(t) и s2(t+).

Одни и те же значения ВКФ по формулам (6.2.1) и (6.2.1") наблюдаются при одном и том же взаимном положении сигналов: при сдвиге на интервал  сигнала u(t) относительно s(t) вправо по оси ординат и сигнала s(t) относительно сигнала u(t) влево, т.е. B su () = B us (-

Рис. 6.2.2. Взаимноковариационные функции сигналов.

На рис. 6.2.2 приведены примеры ВКФ для прямоугольного сигнала s(t) и двух одинаковых треугольных сигналов u(t) и v(t). Все сигналы имеют одинаковую длительность Т, при этом сигнал v(t) сдвинут вперед на интервал Т/2.

Сигналы s(t) и u(t) одинаковы по временному расположению и площадь "перекрытия" сигналов максимальна при =0, что и фиксируется функцией B su . Вместе с тем функция B su резко асимметрична, так как при асимметричной форме сигнала u(t) для симметричной формы s(t) (относительно центра сигналов) площадь "перекрытия" сигналов изменяется по разному в зависимости от направления сдвига (знака  при увеличения значения  от нуля). При смещении исходного положения сигнала u(t) влево по оси ординат (на опережение сигнала s(t) - сигнал v(t)) форма ВКФ остается без изменения и сдвигается вправо на такое же значение величины сдвига – функция B sv на рис. 6.2.2. Если поменять местами выражения функций в (6.2.1), то новая функция B vs будет зеркально повернутой относительно =0 функцией B sv .

С учетом этих особенностей полное ВКФ вычисляется, как правило, отдельно для положительных и отрицательных запаздываний:

B su () =s(t) u(t+) dt. B us () =u(t) s(t+) dt. (6.2.1")

Взаимная корреляция зашумленных сигналов . Для двух зашумленных сигналов u(t) = s1(t)+q1(t) и v(t) = s2(t)+q2(t), применяя методику вывода формул (6.1.13) с заменой копии сигнала s(t) на сигнал s2(t), нетрудно вывести формулу взаимной корреляции в следующем виде:

B uv () = B s1s2 () + B s1q2 () + B q1s2 () + B q1q2 (). (6.2.2)

Последние три члена в правой части (6.2.2) затухают до нуля при увеличении . При больших интервалах задания сигналов выражение может быть записано в следующей форме:

B uv () = B s 1 s 2 () +
+
+
. (6.2.3)

При нулевых средних значениях шумов и статистической независимости от сигналов имеет место:

B uv () → B s 1 s 2 ().

ВКФ дискретных сигналов. Все свойства ВКФ аналоговых сигналов действительны и для ВКФ дискретных сигналов, при этом для них действительны и особенности дискретных сигналов, изложенные выше для дискретных АКФ (формулы 6.1.9-6.1.12). В частности, при t = const =1 для сигналов x(k) и y(k) с числом отсчетов К:

B xy (n) =
x k y k-n . (6.2.4)

При нормировании в единицах мощности:

B xy (n) = x k y k-n 
. (6.2.5)

Оценка периодических сигналов в шуме . Зашумленный сигнал можно оценить по взаимной корреляции с "эталонным" сигналом методом проб и ошибок с настройкой функции взаимной корреляции до максимального значения.

Для сигнала u(k)=s(k)+q(k) при статистической независимости шума и → 0 функция взаимной корреляции (6.2.2) с шаблоном сигнала p(k) при q2(k)=0 принимает вид:

B up (k) = B sp (k) + B qp (k) = B sp (k) + .

А поскольку → 0 при увеличении N, тоB up (k) → B sp (k). Очевидно, что функция B up (k) будет иметь максимум, когда p(k) = s(k). Меняя форму шаблона p(k) и добиваясь максимизации функции B up (k), можно получить оценку s(k) в виде оптимальной формы p(k).

Функция взаимных корреляционных коэффициентов (ВКФ) является количественным показателем степени сходства сигналов s(t) и u(t). Аналогично функции автокорреляционных коэффициентов, она вычисляется через центрированные значения функций (для вычисления взаимной ковариации достаточно центрировать только одну из функций), и нормируется на произведение значений стандартов функций s(t) и v(t):

 su () = C su ()/ s  v . (6.2.6)

Интервал изменения значений корреляционных коэффициентов при сдвигах  может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах , на которых наблюдаются нулевые значения  su (), сигналы независимы друг от друга (некоррелированны). Коэффициент взаимной корреляции позволяет устанавливать наличие связи между сигналами вне зависимости от физических свойств сигналов и их величины.

При вычислении ВКФ зашумленных дискретных сигналов ограниченной длины с использованием формулы (6.2.4) имеется вероятность появления значений  su (n)| > 1.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода при изучении характеристик систем.

В этой главе понятия, введенные в гл. 5 и 6 (вып. 1), распространяются на случай пары временных рядов и случайных процессов. Первым таким обобщением, приведенным в разд. 8.1, является взаимная корреляционная функция двумерного стационарного случайного процесса. Эта функция характеризует корреляцию двух процессов при различных запаздываниях. Второе обобщение представляет собой двумерный линейный процесс, образуемый с помощью линейных операций над двумя источниками белого шума. Важными частными случаями такого процесса являются двумерный процесс авторегрессии и двумерный процесс скользящего среднего.

В разд. 8.2 мы обсудим вопрос об оценивании взаимной корреляционной функции. Мы покажем, что если не применять к обоим рядам фильтрации, переводящей их в белый шум, то при оценивании могут возникать ложные завышенные значения взаимной корреляции. В разд. 8.3 вводится третье обобщение - взаимный спектр стационарного двумерного процесса. Взаимный спектр содержит два различных вида информации, характеризующей зависимость между двумя процессами. Информация первого типа содержится в спектре когерентности, являющемся эффективной мерой корреляции двух процессов на каждой из частот. Информация второго типа дается фазовым спектром, характеризующим разность фаз двух процессов на каждой из частот. В разд. 8.4 оба эти типа информации иллюстрируются на простых примерах.

8.1. ФУНКЦИЯ ВЗАИМНОЙ КОРРЕЛЯЦИИ

8.1.1. Введение

В этой главе мы будем заниматься вопросами описания пары временных рядов, или двумерного временного ряда. Используемые при этом способы являются обобщением способов, применявшихся в гл. 5, 6, и поэтому все относящиеся к временным рядам общие положения, изложенные в разд. 5.1, применимы и в этом случае. В разд. 5.1 под заголовком «Многомерные временные

ряды» кратко упоминалось о том, что отдельные временные ряды, образующие многомерный ряд, могут быть неравноправны по отношению друг к другу. Рассмотрим, например, систему, показанную на рис. 8.1, которая имеет два входа и два выхода

Рис. 8.1. Физическая система с двумя входами и двумя выходами.

Можно различать две ситуации. В первом случае два ряда находятся в одинаковом положении по отношению друг к другу, как, например, два входа на рис. 8.1.

Рис. 8.2. Синфазный и сдвинутый по фазе токи на выходе турбогенератора.

В этом случае могут быть двумя коррелированными переменными управления, взаимодействие которых мы хотим изучить. Пример пары временных рядов, попадающих в эту категорию, приведен на рис. 8.2,

где приведены записи синфазного и сдвинутого по фазе входных токов турбогенератора.

Во втором случае два временных ряда причинно связаны, например вход на рис. 8.1 и зависящий от него выход . В такой ситуации обычно требуется оценить свойства системы в такой форме, чтобы было удобно предсказывать выход по входу. Пример пары временных рядов такого типа приведен на рис. 8.3, где показана скорость впуска газа и концентрация двуокиси углерода на выходе газовой печи.

Рис. 8.3. Сигналы на входе и выходе газовой печи.

Видно, что выход запаздывает по отношению ко входу из-за того, что для доставки газа к реактору требуется некоторое время.

Взаимная корреляция решает задачу о зависимости аномальных графиков, построенных по параллельным профилям или по наблюдениям, выполненных различными приборами, в разное время и пр. Меру зависимости выражает интеграл

R xy (t )= , (11.13)

где t ‑ сдвиг по графику второй функции.

Функция, вычисленная по дискретным значениям поля на двух соседних профилях, носит название взаимно корреляционной (ВКФ) и вычисляется по формуле

В(m) =

где Z i (x i) – значение поля на первом профиле в точке x i ; Z 2 (x i + m ) – значение поля на втором профиле в точке i+ m ; и – средние значения поля на соседних профилях.

В итоге взаимной корреляции может быть трассировано вытянутое вкось к профилям аномальное тело. Корреляция карт магнитных аномалий с различными геофизическими и геологическими картами часто производится визуально. Межпрофильная корреляция магнитного поля по профилям напоминает корреляционный способ выделения полезного сигнала на фоне помех, известного в сейсморазведке под названием метода регулированного направленного приема.

Разработке корреляционных методов интерпретации аномалий посвящено пособие "Атлас корреляционных функций гравитационных и магнитных аномалий тел правильной формы" (О.А. Одеков, Г.И. Каратаев, О.К. Басов, Б.А. Курбансахатов) /25/. В атласе приведены графики корреляционных функций для тел правильной формы, для которых теоретические кривые даны в атласе Д.С. Микова. Графикам предпослан текст по теории и практике корреляционных исследований, тщательно разработаны вопросы практического применения АКФ.

Автокорреляционные графики для аномалий Z (они же применимы и для аномалий Н ) приведены для трех уровней. Графики взаимной корреляции приведены для сочетания различного вида аномалий. В тексте суммированы предложения о целесообразности использования автокорреляционных графиков при обработке и интерпретации исходных магнитных аномалий.

Автокорреляция и взаимная корреляция являются новейшими методиками статистических исследований. Хотя в литературе недавних лет они почти не рассматривались, представленная информация о сущности и применении их имеет характер аннотаций. Думается, что при обработке большого объема полевых наблюдений эти методы найдут достойное место. О значимости проблемы применения корреляционных функций для интерпретации магнитных аномалий А.К.Маловичко писал: « данной проблеме в современной геофизической литературе уделяется очень много внимания, хотя в целом она представляется дискуссионной. При трактовке ее игнорируются возможности изучения функциональных полей, основанных на законе Кулона, на использовании хорошо известных формул» /25/.


Теории корреляций стыкуются при решении задач, связанных с изучением переходных процессов, с теорией трансформаций Фурье. Интегралы в корреляционных функциях являются интегралами типа свертки, поэтому развитие теории естественно рассматривается с применением спектральных представлений, частотных характеристик и энергетических спектров.

Задачи магниторазведки, решаемые корреляционными методами анализа, описаны в книге С.А. Серкерова /29/.