Использование пифагоровых троек при решении геометрических задач и тригонометрических заданий егэ. Пифагоровы тройки чисел (Творческая работа обучающегося) Три одинаковые гипотенузы в пифагоровых тройках

» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта, посвященной роли чисел в истории человечества и актуальности их изучения в наше время.

Пифагорова гипотенуза

Пифагоровы треугольники имеют прямой угол и целочисленные стороны. У простейшего из них самая длинная сторона имеет длину 5, остальные - 3 и 4. Всего существует 5 правильных многогранников. Уравнение пятой степени невозможно решить при помощи корней пятой степени - или любых других корней. Решетки на плоскости и в трехмерном пространстве не имеют пятилепестковой симметрии вращения, поэтому такие симметрии отсутствуют и в кристаллах. Однако они могут быть у решеток в четырехмерном пространстве и в занятных структурах, известных как квазикристаллы.

Гипотенуза самой маленькой пифагоровой тройки

Теорема Пифагора гласит, что самая длинная сторона прямоугольного треугольника (пресловутая гипотенуза) соотносится с двумя другими сторонами этого треугольника очень просто и красиво: квадрат гипотенузы равен сумме квадратов двух других сторон.

Традиционно мы называем эту теорему именем Пифагора, но на самом деле история ее достаточно туманна. Глиняные таблички позволяют предположить, что древние вавилоняне знали теорему Пифагора задолго до самого Пифагора; славу первооткрывателя принес ему математический культ пифагорейцев, сторонники которого верили, что Вселенная основана на числовых закономерностях. Древние авторы приписывали пифагорейцам - а значит, и Пифагору - самые разные математические теоремы, но на самом деле мы представления не имеем о том, какой математикой занимался сам Пифагор. Мы даже не знаем, могли ли пифагорейцы доказать теорему Пифагора или просто верили в то, что она верна. Или, что наиболее вероятно, у них были убедительные данные о ее истинности, которых тем не менее не хватило бы на то, что мы считаем доказательством сегодня.

Доказательства Пифагора

Первое известное доказательство теоремы Пифагора мы находим в «Началах» Евклида. Это достаточно сложное доказательство с использованием чертежа, в котором викторианские школьники сразу узнали бы «пифагоровы штаны»; чертеж и правда напоминает сохнущие на веревке подштанники. Известны буквально сотни других доказательств, большинство из которых делает доказываемое утверждение более очевидным.


// Рис. 33. Пифагоровы штаны

Одно из простейших доказательств - это своего рода математический пазл. Возьмите любой прямоугольный треугольник, сделайте четыре его копии и соберите их внутри квадрата. При одной укладке мы видим квадрат на гипотенузе; при другой - квадраты на двух других сторонах треугольника. При этом ясно, что площади в том и другом случае равны.


// Рис. 34. Слева: квадрат на гипотенузе (плюс четыре треугольника). Справа: сумма квадратов на двух других сторонах (плюс те же четыре треугольника). А теперь исключите треугольники

Рассечение Перигаля - еще одно доказательство-пазл.


// Рис. 35. Рассечение Перигаля

Существует также доказательство теоремы с использованием укладки квадратов на плоскости. Возможно, именно так пифагорейцы или их неизвестные предшественники открыли эту теорему. Если взглянуть на то, как косой квадрат перекрывает два других квадрата, то можно увидеть, как разрезать большой квадрат на куски, а затем сложить из них два меньших квадрата. Можно увидеть также прямоугольные треугольники, стороны которых дают размеры трех задействованных квадратов.


// Рис. 36. Доказательство мощением

Есть интересные доказательства с использованием подобных треугольников в тригонометрии. Известно по крайней мере пятьдесят различных доказательств.

Пифагоровы тройки

В теории чисел теорема Пифагора стала источником плодотворной идеи: найти целочисленные решения алгебраических уравнений. Пифагорова тройка - это набор целых чисел a, b и c, таких что

Геометрически такая тройка определяет прямоугольный треугольник с целочисленными сторонами.

Самая маленькая гипотенуза пифагоровой тройки равна 5.

Другие две стороны этого треугольника равны 3 и 4. Здесь

32 + 42 = 9 + 16 = 25 = 52.

Следующая по величине гипотенуза равна 10, потому что

62 + 82 = 36 + 64 = 100 = 102.

Однако это, по существу, тот же треугольник с удвоенными сторонами. Следующая по величине и по-настоящему другая гипотенуза равна 13, для нее

52 + 122 = 25 + 144 = 169 = 132.

Евклид знал, что существует бесконечное число различных вариантов пифагоровых троек, и дал то, что можно назвать формулой для нахождения их всех. Позже Диофант Александрийский предложил простой рецепт, в основном совпадающий с евклидовым.

Возьмите любые два натуральных числа и вычислите:

их удвоенное произведение;

разность их квадратов;

сумму их квадратов.

Три получившихся числа будут сторонами пифагорова треугольника.

Возьмем, к примеру, числа 2 и 1. Вычислим:

удвоенное произведение: 2 × 2 × 1 = 4;

разность квадратов: 22 - 12 = 3;

сумма квадратов: 22 + 12 = 5,

и мы получили знаменитый треугольник 3–4–5. Если взять вместо этого числа 3 и 2, получим:

удвоенное произведение: 2 × 3 × 2 = 12;

разность квадратов: 32 - 22 = 5;

сумму квадратов: 32 + 22 = 13,

и получаем следующий по известности треугольник 5 - 12 - 13. Попробуем взять числа 42 и 23 и получим:

удвоенное произведение: 2 × 42 × 23 = 1932;

разность квадратов: 422 - 232 = 1235;

сумма квадратов: 422 + 232 = 2293,

никто никогда не слышал о треугольнике 1235–1932–2293.

Но эти числа тоже работают:

12352 + 19322 = 1525225 + 3732624 = 5257849 = 22932.

В диофантовом правиле есть еще одна особенность, на которую уже намекали: получив три числа, мы можем взять еще одно произвольное число и все их на него умножить. Таким образом треугольник 3–4–5 можно превратить в треугольник 6–8–10, умножив все стороны на 2, или в треугольник 15–20–25, умножив все на 5.

Если перейти на язык алгебры, правило приобретает следующий вид: пусть u, v и k - натуральные числа. Тогда прямоугольный треугольник со сторонами

2kuv и k (u2 - v2) имеет гипотенузу

Существуют и другие способы изложения основной идеи, но все они сводятся к описанному выше. Этот метод позволяет получить все пифагоровы тройки.

Правильные многогранники

Существует ровным счетом пять правильных многогранников. Правильный многогранник (или полиэдр) - это объемная фигура с конечным числом плоских граней. Грани сходятся друг с другом на линиях, именуемых ребрами; ребра встречаются в точках, именуемых вершинами.

Кульминацией евклидовых «Начал» является доказательство того, что может быть только пять правильных многогранников, то есть многогранников, у которых каждая грань представляет собой правильный многоугольник (равные стороны, равные углы), все грани идентичны и все вершины окружены равным числом одинаково расположенных граней. Вот пять правильных многогранников:

тетраэдр с четырьмя треугольными гранями, четырьмя вершинами и шестью ребрами;

куб, или гексаэдр, с 6 квадратными гранями, 8 вершинами и 12 ребрами;

октаэдр с 8 треугольными гранями, 6 вершинами и 12 ребрами;

додекаэдр с 12 пятиугольными гранями, 20 вершинами и 30 ребрами;

икосаэдр с 20 треугольными гранями, 12 вершинами и 30 ребрами.


// Рис. 37. Пять правильных многогранников

Правильные многогранники можно найти и в природе. В 1904 г. Эрнст Геккель опубликовал рисунки крохотных организмов, известных как радиолярии; многие из них по форме напоминают те самые пять правильных многогранников. Возможно, правда, он немного подправил природу, и рисунки не отражают полностью форму конкретных живых существ. Первые три структуры наблюдаются также в кристаллах. Додекаэдра и икосаэдра в кристаллах вы не найдете, хотя неправильные додекаэдры и икосаэдры там иногда попадаются. Настоящие додекаэдры могут возникать в виде квазикристаллов, которые во всем похожи на кристаллы, за исключением того, что их атомы не образуют периодической решетки.


// Рис. 38. Рисунки Геккеля: радиолярии в форме правильных многогранников


// Рис. 39. Развертки правильных многогранников

Бывает интересно делать модели правильных многогранников из бумаги, вырезав предварительно набор соединенных между собой граней - это называется разверткой многогранника; развертку складывают по ребрам и склеивают соответствующие ребра между собой. Полезно добавить к одному из ребер каждой такой пары дополнительную площадку для клея, как показано на рис. 39. Если такой площадки нет, можно использовать липкую ленту.

Уравнение пятой степени

Не существует алгебраической формулы для решения уравнений 5-й степени.

В общем виде уравнение пятой степени выглядит так:

ax5 + bx4 + cx3 + dx2 + ex + f = 0.

Проблема в том, чтобы найти формулу для решений такого уравнения (у него может быть до пяти решений). Опыт обращения с квадратными и кубическими уравнениями, а также с уравнениями четвертой степени позволяет предположить, что такая формула должна существовать и для уравнений пятой степени, причем в ней, по идее, должны фигурировать корни пятой, третьей и второй степени. Опять же, можно смело предположить, что такая формула, если она существует, окажется очень и очень сложной.

Это предположение в конечном итоге оказалось ошибочным. В самом деле, никакой такой формулы не существует; по крайней мере не существует формулы, состоящей из коэффициентов a, b, c, d, e и f, составленной с использованием сложения, вычитания, умножения и деления, а также извлечения корней. Таким образом, в числе 5 есть что-то совершенно особенное. Причины такого необычного поведения пятерки весьма глубоки, и потребовалось немало времени, чтобы в них разобраться.

Первым признаком проблемы стало то, что, как бы математики ни старались отыскать такую формулу, какими бы умными они ни были, они неизменно терпели неудачу. Некоторое время все считали, что причины кроются в неимоверной сложности формулы. Считалось, что никто просто не может как следует разобраться в этой алгебре. Однако со временем некоторые математики начали сомневаться в том, что такая формула вообще существует, а в 1823 г. Нильс Хендрик Абель сумел доказать обратное. Такой формулы не существует. Вскоре после этого Эварист Галуа нашел способ определить, решаемо ли уравнение той или иной степени - 5-й, 6-й, 7-й, вообще любой - с использованием такого рода формулы.

Вывод из всего этого прост: число 5 особенное. Можно решать алгебраические уравнения (при помощи корней n-й степени для различных значений n) для степеней 1, 2, 3 и 4, но не для 5-й степени. Здесь очевидная закономерность заканчивается.

Никого не удивляет, что уравнения степеней больше 5 ведут себя еще хуже; в частности, с ними связана такая же трудность: нет общих формул для их решения. Это не означает, что уравнения не имеют решений; это не означает также, что невозможно найти очень точные численные значения этих решений. Все дело в ограниченности традиционных инструментов алгебры. Это напоминает невозможность трисекции угла при помощи линейки и циркуля. Ответ существует, но перечисленные методы недостаточны и не позволяют определить, каков он.

Кристаллографическое ограничение

Кристаллы в двух и трех измерениях не имеют 5-лучевой симметрии вращения.

Атомы в кристалле образуют решетку, то есть структуру, которая периодически повторяется в нескольких независимых направлениях. К примеру, рисунок на обоях повторяется по длине рулона; кроме того, он обычно повторяется и в горизонтальном направлении, иногда со сдвигом от одного куска обоев к следующему. По существу, обои - это двумерный кристалл.

Существует 17 разновидностей обойных рисунков на плоскости (см. главу 17). Они различаются по типам симметрии, то есть по способам сдвинуть жестко рисунок таким образом, чтобы он точно лег сам на себя в первоначальном положении. К типам симметрии относятся, в частности, различные варианты симметрии вращения, где рисунок следует повернуть на определенный угол вокруг определенной точки - центра симметрии.

Порядок симметрии вращения - это то, сколько раз можно повернуть тело до полного круга так, чтобы все детали рисунка вернулись на первоначальные позиции. К примеру, поворот на 90° - это симметрия вращения 4-го порядка*. Список возможных типов симметрии вращения в кристаллической решетке вновь указывает на необычность числа 5: его там нет. Существуют варианты с симметрией вращения 2, 3, 4 и 6-го порядков, но ни один обойный рисунок не имеет симметрии вращения 5-го порядка. Симметрии вращения порядка больше 6 в кристаллах тоже не бывает, но первое нарушение последовательности происходит все же на числе 5.

То же происходит с кристаллографическими системами в трехмерном пространстве. Здесь решетка повторяет себя по трем независимым направлениям. Существует 219 различных типов симметрии, или 230, если считать зеркальное отражение рисунка отдельным его вариантом - притом, что в данном случае нет зеркальной симметрии. Опять же, наблюдаются симметрии вращения порядков 2, 3, 4 и 6, но не 5. Этот факт получил название кристаллографического ограничения.

В четырехмерном пространстве решетки с симметрией 5-го порядка существуют; вообще, для решеток достаточно высокой размерности возможен любой наперед заданный порядок симметрии вращения.


// Рис. 40. Кристаллическая решетка поваренной соли. Темные шарики изображают атомы натрия, светлые - атомы хлора

Квазикристаллы

Хотя симметрия вращения 5-го порядка в двумерных и трехмерных решетках невозможна, она может существовать в чуть менее регулярных структурах, известных как квазикристаллы. Воспользовавшись набросками Кеплера, Роджер Пенроуз открыл плоские системы с более общим типом пятикратной симметрии. Они получили название квазикристаллов.

Квазикристаллы существуют в природе. В 1984 г. Даниэль Шехтман открыл, что сплав алюминия и марганца может образовывать квазикристаллы; первоначально кристаллографы встретили его сообщение с некоторым скепсисом, но позже открытие было подтверждено, и в 2011 г. Шехтман был удостоен Нобелевской премии по химии. В 2009 г. команда ученых под руководством Луки Бинди обнаружила квазикристаллы в минерале с российского Корякского нагорья - соединении алюминия, меди и железа. Сегодня этот минерал называется икосаэдрит. Измерив при помощи масс-спектрометра содержание в минерале разных изотопов кислорода, ученые показали, что этот минерал возник не на Земле. Он сформировался около 4,5 млрд лет назад, в то время, когда Солнечная система только зарождалась, и провел большую часть времени в поясе астероидов, обращаясь вокруг Солнца, пока какое-то возмущение не изменило его орбиту и не привело его в конце концов на Землю.


// Рис. 41. Слева: одна из двух квазикристаллических решеток с точной пятикратной симметрией. Справа: атомная модель икосаэдрического алюминиево-палладиево-марганцевого квазикристалла

Червяк Виталий

Скачать:

Предварительный просмотр:

Конкурс научных проектов школьников

В рамках краевой научно-практической конференции «Эврика»

Малой академии наук учащихся Кубани

Исследование пифагоровых чисел

Секция математика.

Червяк Виталий Геннадиевич, 9 класс

МОБУ СОШ №14

Кореновский район

Ст. Журавская

Научный руководитель:

Манько Галина Васильевна

Учитель математики

МОБУ СОШ №14

Кореновск 2011 г

Червяк Виталий Геннадиевич

Пифагоровы числа

Аннотация.

Тема исследования: Пифагоровы числа

Цели исследования:

Задачи исследования:

  • Выявление и развитие математических способностей;
  • Расширение математического представления по данной теме;
  • Формирование устойчивого интереса к предмету;
  • Развитие коммуникативных и общеучебных навыков самостоятельной работы, умение вести дискуссию, аргументировать и т.д.;
  • Формирование и развитие аналитического и логического мышления;

Методы исследования:

Вывод:

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

  1. Введение…………………………………………………………………3
  2. Основная часть

2.1 Историческая страничка……………………………………………………4

2.2 Доказательство чётности и нечётности катетов……….............................5-6

2.3 Вывод закономерности для нахождения

Пифагоровых чисел……………………………………………………………7

2.4 Свойства пифагоровых чисел ……………………………………………… 8

3. Заключение……………………………………………………………………9

4.Список использованных источников и литературы…………………… 10

Приложения.........................................................................................................11

Приложение I……………………………………………………………………11

Приложение II…………………………………………………………………..13

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Введение

О Пифагоре и его жизни я услышал в пятом классе на уроке математики, и меня заинтересовало высказывание «Пифагоровы штаны во все стороны равны». При изучении теоремы Пифагора меня заинтересовали пифагоровы числа.Я поставил цель исследования : узнать больше о теореме Пифагора и «пифагоровых числах».

Актуальность темы . Ценность теоремы Пифагора и пифагоровых троек доказана многими учёнными мира на протяжении многих веков. Проблема, о которой пойдёт речь в моей работе выглядит довольно простой потому, что в основе её лежит математическое утверждение, которое всем известно, - теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах. Теперь тройки натуральных чисел x, y, z, для которых x 2 + y 2 = z 2 , принято называть пифагоровыми тройками . Оказывается, пифагоровы тройки знали уже в Вавилоне. Постепенно нашли их и греческие математики.

Цель данной работы

  1. Исследовать пифагоровы числа;
  2. Понять, как получаются пифагоровы числа;
  3. Выяснить, какими свойствами обладают пифагоровы числа;
  4. Опытно-экспериментальным путём построить перпендикулярные прямые на местности, используя пифагоровы числа;

В соответствии с целью работы поставлен ряд следующих задач :

1. Глубже изучить историю теоремы Пифагора;

2. Анализ универсальных свойств пифагоровых троек.

3. Анализ практического применения пифагоровых троек.

Объект исследования : пифагоровы тройки.

Предмет исследования : математика .

Методы исследования : - Использование ресурсов сети Интернет; -Обращение к справочной литературе; -Проведение эксперимента;

Теоретическая значимость: роль, которую играет открытие пифагоровых троек в науке; практическое применение открытия Пифагора в жизнедеятельности человека.

Прикладная ценность исследования заключается в анализе литературных источников и систематизации фактов.

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Из истории пифагоровых чисел.

Математическая книга Чу-пей: [ 2]

"Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

  • Древний Египет: [ 2]

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты , или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3; 4 и 5.

  • Вавилония: [ 3 ]

«Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

  • История теоремы Пифагора: ,

Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него.

В вавилонских текстах она встречается за 1200 лет до Пифагора.

По-видимому, он первым нашёл её доказательство. В связи с этим была сделана следующую запись: «… когда он открыл, что в прямоугольном треугольнике гипотенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Исследование Пифагоровых чисел.

  • Каждый треугольник, стороны относятся как 3:4:5, согласно общеизвестной теореме Пифагора, - прямоугольный, так как

3 2 + 4 2 = 5 2.

  • Кроме чисел 3,4 и 5 , существует, как известно, бесконечное множество целых положительных чисел а, в и с, удовлетворяющих соотношению
  • А 2 + в 2 = с 2.
  • Эти числа называются пифагоровыми числами

Пифагоровы тройки известны очень давно. В архитектуре древнелесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н.э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей. [ 1 ]

Прямоугольный треугольник, с катетами 3, 4 и гипотенузой 5 называется египетским треугольником. Площадь этого треугольника равна совершенному числу 6. Периметр равен 12 – числу, которое считалось символом счастья и достатка.

С помощью верёвки разделенной узлами на 12 равных частей древние египтяне строили прямоугольный треугольник и прямой угол. Удобный и очень точный способ, употребляемый землемерами для проведения на местности перпендикулярных линий. Необходимо взять шнур и три колышка, шнур располагают треугольником так, чтобы одна сторона состояла из 3 частей, вторая из 4 долей и последняя из пяти таких долей. Шнур расположится треугольником, в котором есть прямой угол.

Этот древний способ, по-видимому, применявшийся ещё тысячелетия назад строителями египетских пирамид, основан на том, что каждый треугольник, стороны которого относятся как 3:4:5, согласно теореме Пифагора, прямоугольный.

Нахождением пифагоровых троек занимались Евклид, Пифагор, Диофант и многие другие. [ 1]

Ясно, что если (x, y, z ) – пифагорова тройка, то для любого натурального k тройка (kx, ky, kz ) также будет пифагоровой тройкой. В частности, (6, 8, 10), (9, 12, 15) и т.д. являются пифагоровыми тройками.

По мере того, как числа возрастают, пифагоровы тройки встречаются всё реже и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания

таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много.

Тройки, не имеющие общих делителей, больших 1, называются простейшими.

Рассмотрим некоторые свойства пифагоровых троек. [ 1]

Согласно теореме Пифагора эти числа могут служить длинами некоторого прямоугольного треугольника; поэтому а и в называют «катетами»,а с – « гипотенузой».
Ясно, что если а,в,с есть тройка пифагоровых чисел, то и ра,рв,рс, где р- целочисленный множитель,- пифагоровы числа.
Верно и обратное утверждение!
Поэтому будем вначале исследовать лишь тройки взаимно простых пифагоровых чисел (остальные получаются из них умножением на целочисленный множитель р).

Покажем, что в каждой из таких троек а,в,с один из «катетов»должен быть чётным, а другой нечётным. Будем рассуждать «от противного». Если оба «катета» а и в чётны, то чётным будет число а 2 + в 2 , а значит и «гипотенуза». Но это противоречит тому, что числа а,в и с не имеют общих множителей, так как три чётных числа имеют общий множитель 2. Таким образом хоть один из « катетов» а и в нечётен.

Остаётся ещё одна возможность: оба «катета» нечётные, а «гипотенуза» чётная. Нетрудно доказать, что этого не может быть, так как если «катеты» имеют вид 2 х + 1 и 2у+1, то сумма их квадратов равна

4х 2 + 4х + 1 + 4у 2 + 4у +1 = 4 (х 2 + х + у 2 + у) +2, т.е. представляет собой число, которое при делении на 4 даёт в остатке 2. Между тем квадрат всякого чётного числа должен делиться на 4 без остатка.

Значит, сумма квадратов двух нечётных чисел не может быть квадратом чётного числа; иначе говоря, наши три числа - не пифагоровы.

ВЫВОД:

Итак, из « катетов» а, в один чётный, а другой нечётный. Поэтому число а 2 + в 2 нечётно, а значит, нечётна и « гипотенуза» с.

Пифагор нашёл формулы, которые в современной символике могут быть записаны так: a=2n+1, b=2n(n+1), c=2 n 2 +2n+1, где n – целое число.

Эти числа – пифагоровы тройки.

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Вывод закономерности для нахождения пифагоровых чисел.

Вот следующие пифагоровы тройки:

  • 3, 4, 5; 9+16=25.
  • 5, 12, 13; 25+144=225.
  • 7, 24, 25; 49+576=625.
  • 8, 15, 17; 64+225=289.
  • 9, 40, 41; 81+1600=1681.
  • 12, 35, 37; 144+1225=1369.
  • 20, 21, 29; 400+441=881

Нетрудно заметить, что при умножении каждого из чисел пифагоровой тройки на 2, 3, 4, 5 и т.д., мы получим следующие тройки.

  • 6, 8, 10;
  • 9,12,15.
  • 12, 16, 20;
  • 15, 20, 25;
  • 10, 24, 26;
  • 18, 24, 30;
  • 16, 30, 34;
  • 21, 28, 35;
  • 15, 36, 39;
  • 24, 32, 40;
  • 14, 48, 50;
  • 30, 40, 50 и т.д.

Они так же являются Пифагоровыми числами/

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Свойства пифагоровых чисел.

  • При рассмотрении пифагоровых чисел я увидел ряд свойств:
  • 1) Одно из пифагоровых чисел должно быть кратно трём;
  • 2) Другое из них должно быть кратно четырём;
  • 3) А третье из пифагоровых чисел должно быть кратно пяти;

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Заключение.

Геометрия, как и другие науки, возникла из потребностей практики. Само слово «геометрия» - греческое, в переводе означает «землемерие».

Люди очень рано столкнулись с необходимостью измерять земельные участки. Уже за 3-4 тыс. лет до н.э. каждый клочок плодородной земли в долинах Нила, Ефрата и Тигра, рек Китая имел значение для жизни людей. Это требовало определённого запаса геометрических и арифметических знаний.

Постепенно люди начали измерять и изучать свойства более сложных геометрических фигур.

И в Египте и в Вавилоне сооружались колоссальные храмы, строительство которых могло производиться только на основе предварительных расчётов. Также строились водопроводы. Всё это требовало чертежей и расчётов. К этому времени были хорошо известны частные случаи теоремы Пифагора, уже знали, что если взять треугольники со сторонами x, y, z, где x, y, z – такие целые числа, что x 2 + y 2 = z 2 , то эти треугольники будут прямоугольными.

Все эти знания непосредственным образом применялись во многих сферах жизнедеятельности человека.

Так до сих пор великое открытие учёного и философа древности Пифагора находит прямое применение в нашей жизни.

Строительство домов, дорог, космических кораблей, автомобилей, станков, нефтепроводов, самолётов, тоннелей, метро и многое, многое другое. Пифагоровы тройки находят прямое применение в проектировании множества вещей, окружающих нас в повседневной жизни.

А умы учёных продолжают искать новые варианты доказательств теоремы Пифагора.

  • В результате моей работы мне удалось:
  • 1. Больше узнать о Пифагоре, его жизни, братстве Пифагорейцев.
  • 2. Познакомится с историей теоремы Пифагора.
  • 3. Узнать о пифагоровых числах, их свойствах, научиться их находить и применять в практической деятельности.

Червяк Виталий Геннадиевич

Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

Пифагоровы числа

Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

Литература.

  1. Занимательная алгебра. Я.И. Перельман (с.117-120)
  2. www.garshin.ru
  3. image.yandex.ru

4. Аносов Д.В. Взгляд на математику и нечто из неё. – М.: МЦНМО, 2003.

5. Детская энциклопедия. – М.: Издательство Академии Педагогических Наук РСФСР, 1959.

6. Степанова Л.Л. Избранные главы элементарной теории чисел. – М.: Прометей, 2001.

7. В. Серпинский Пифагоровы треугольники. - М.: Учпедгиз, 1959. С.111

Ход исследования Историческая страничка; Теорема Пифагора; Доказать, что один из « катетов» должен быть чётным, а другой нечётным; Вывод закономерности для нахождения пифагоровых чисел; Выявить свойства пифагоровых чисел;

Введение О Пифагоре и его жизни я услышал в пятом классе на уроке математики, и меня заинтересовало высказывание «Пифагоровы штаны во все стороны равны». При изучении теоремы Пифагора меня заинтересовали пифагоровы числа. Я поставил цель исследования: узнать больше о теореме Пифагора и «пифагоровых числах».

Пр ебудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век

Из истории пифагоровых чисел. Древний Китай Математическая книга Чу-пей: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

Пифагоровы числа у древних египтян Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или " натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3; 4 и 5.

Теорема Пифагора в Вавилонии «Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

Каждый треугольник, стороны относятся как 3:4:5, согласно общеизвестной теореме Пифагора, - прямоугольный, так как 3 2 + 4 2 = 5 2. Кроме чисел 3,4 и 5 , существует, как известно, бесконечное множество целых положительных чисел а, в и с, удовлетворяющих соотношению А 2 + в 2 = с 2. Эти числа называются пифагоровыми числами

Согласно теореме Пифагора эти числа могут служить длинами некоторого прямоугольного треугольника; поэтому а и в называют «катетами», а с – « гипотенузой». Ясно, что если а,в,с есть тройка пифагоровых чисел, то и ра,рв,рс, где р - целочисленный множитель,- пифагоровы числа. Верно и обратное утверждение! Поэтому будем вначале исследовать лишь тройки взаимно простых пифагоровых чисел (остальные получаются из них умножением на целочисленный множитель р)

Вывод! Итак из чисел а и в одно чётно, а другое нечётно, а значит нечётно и третье число.

Вот следующие Пифагоровы тройки: 3, 4, 5; 9+16=25 . 5, 12, 13; 25+144=169. 7, 24, 25; 49+576=625. 8, 15, 17; 64+225=289. 9, 40, 41; 81+1600=1681. 12, 35, 37; 144+1225=1369. 20, 21, 29; 400+441=841

Нетрудно заметить, что при умножении каждого из чисел пифагоровой тройки на 2, 3, 4, 5 и т.д., мы получим следующие тройки. 6, 8, 10; 9,12,15. 12, 16, 20; 15, 20, 25; 10, 24, 26; 18, 24, 30; 16, 30, 34; 21, 28, 35; 15, 36, 39; 24, 32, 40; 14, 48, 50; 30, 40, 50 и т.д. Они так же являются Пифагоровыми числами

Свойства пифагоровых чисел При рассмотрении пифагоровых чисел я увидел ряд свойств: 1) Одно из пифагоровых чисел должно быть кратно трём; 2) одно из них должно быть кратно четырём; 3) А другое из пифагоровых чисел должно быть кратно пяти;

Практическое применение пифагоровых чисел

Вывод: В результате моей работы мне удалось 1. Больше узнать о Пифагоре, его жизни, братстве Пифагорейцев. 2. Познакомится с историей теоремы Пифагора. 3. Узнать о пифагоровых числах, их свойствах, научиться их находить. Опытно –экспериментальным путём откладывать прямой угол с помощью пифагоровых чисел.

Важный пример диофантова уравнения дает теорема Пифагора, связывающая длины x и y катетов прямоугольного треугольника с длиной z его гипотенузы:


Вы, конечно, встречали одно из замечательных решений этого уравнения в натуральных числах, а именно пифагорову тройку чисел x = 3, y = 4, z = 5. Есть ли еще такие тройки?

Оказывается пифагоровых троек бесконечно много и все они давным-давно найдены. Они могут быть получены по известным формулам, о которых вы узнаете из настоящего параграфа.

Если диофантовы уравнения первой и второй степени уже решены, то вопрос о решении уравнений более высоких степеней до сих пор остается открытым, несмотря на усилия крупнейших математиков. В настоящее время, например, еще окончательно не доказана и не опровергнута знаменитая гипотеза Ферма о том, что при любом целом значении n&362;2 уравнение


в целых числах не имеет решений.

Для решения некоторых типов диофантовых уравнений полезную роль могут сыграть так называемые комплексные числа. Что это такое? Пусть буквой i обозначен некий объект, удовлетворяющий условию i 2 = -1 (понятно, что ни одно действительное число этому условию не удовлетворяет). Рассмотрим выражения вида α + iβ, где α и β - действительные числа. Такие выражения будем называть комплексными числами, определив над ними операции сложения и умножения, как и над двучленами, но с той лишь разницей, что выражение i 2 всюду будем заменять числом -1:

7.1. Из одной тройки много

Докажите, что если x 0 , y 0 , z 0 - пифагорова тройка, то тройки y 0 , x 0 , z 0 и x 0 k, y 0 k, z 0 k при любом значении натурального параметра k также являются пифагоровыми.

7.2. Частные формулы

Проверьте, что при любых натуральных значениях m>n тройка вида

является пифагоровой. Всякую ли пифагорову тройку x, y, z можно представить в таком виде, если разрешить переставлять местами числа x и y в тройке?

7.3. Несократимые тройки

Пифагорову тройку чисел, не имеющих общего делителя, большего 1, будем называть несократимой. Докажите, что пифагорова тройка является несократимой только в случае, если любые два из чисел тройки являются взаимно простыми.

7.4. Свойство несократимых троек

Докажите, что в любой несократимой пифагоровой тройке x, y, z число z и ровно одно из чисел x или y являются нечетными.

7.5. Все несократимые тройки

Докажите, что тройка чисел x, y, z является несократимой пифагоровой тройкой тогда и только тогда, когда она с точностью до порядка первых двух чисел совпадает с тройкой 2mn, m 2 - n 2 , m 2 + n 2 , где m>n - взаимно простые натуральные числа разной четности.

7.6. Общие формулы

Докажите, что все решения уравнения


в натуральных числах задаются с точностью до порядка неизвестных x и y формулами

где m>n и k - натуральные параметры (чтобы исключить дублирование каких-либо троек, достаточно выбирать числа тип взаимно простыми и к тому же разной четности).

7.7. Первые 10 троек

Найдите все пифагоровы тройки x, y, z, удовлетворяющие условию x

7.8. Свойства пифагоровых троек

Докажите, что для любой пифагоровой тройки x, y, z справедливы утверждения:

а) хотя бы одно из чисел x или y кратно 3;

б) хотя бы одно из чисел x или y кратно 4;

в) хотя бы одно из чисел x, y или z кратно 5.

7.9. Применение комплексных чисел

Модулем комплексного числа α + iβ называется неотрицательное число

Проверьте, что для любых комплексных чисел α + iβ и γ + iδ выполняется свойство

Пользуясь свойствами комплексных чисел и их модулей, докажите, что любые два целых числа m и n удовлетворяют равенству

т. е. задают решение уравнения


целых числах (сравните с задачей 7.5).

7.10. Непифагоровы тройки

Пользуясь свойствами комплексных чисел и их модулей (см. задачу 7.9), найдите формулы для каких-либо целочисленных решений уравнения:

а) x 2 + y 2 = z 3 ; б) x 2 + y 2 = z 4 .

Решения


7.1. Если x 0 2 + y 0 2 = z 0 2 , то y 0 2 + x 0 2 = z 0 2 , и при любом натуральном значении k имеем

что и требовалось доказать.

7.2. Из равенств

заключаем, что указанная в задаче тройка удовлетворяет уравнению x 2 + y 2 = z 2 в натуральных числах. Однако не всякую пифагорову тройку x, y, z можно представить в таком виде; например, тройка 9, 12, 15 является пифагоровой, но число 15 не представимо в виде суммы квадратов каких-либо двух натуральных чисел m и n.

7.3. Если какие-то два числа из пифагоровой тройки x, y, z имеют общий делитель d, то он будет делителем и третьего числа (так, в случае x = x 1 d, y = y 1 d имеем z 2 = x 2 + y 2 = (x 1 2 + y 1 2)d 2 , откуда z 2 делится на d 2 и z делится на d). Поэтому для несократимости пифагоровой тройки необходимо, чтобы любые два из чисел тройки были взаимно простыми,

7.4. Заметим, что одно из чисел x или y, скажем x, несократимой пифагоровой тройки x, y, z является нечетным, так как в противном случае числа x и y не были бы взаимно простыми (см. задачу 7.3). Если при этом другое число y также нечетно, то оба числа

дают остаток 1 при делении на 4, а число z 2 = x 2 + y 2 дает при делении на 4 остаток 2, т. е. оно делится на 2, но не делится на 4, чего не может быть. Таким образом, число y должно быть четным, а число z, стало быть, нечетным.

7.5. Пусть пифагорова тройка x, y, z несократима и, для определенности, число x четно, а числа y, z нечетны (см. задачу 7.4). Тогда

где числа являются целыми. Докажем, что числа а и b взаимно просты. В самом деле, если бы они имели общий делитель, больший 1, то такой же делитель имели бы и числа z = a + b, y = a - b, т. е. тройка не была бы несократимой (см. задачу 7.3). Теперь, раскладывая числа а и b в произведения простых множителей, замечаем, что любой простой множитель должен входить в произведение 4ab = x 2 только в четной степени, причем если он входит в разложение числа а, то не входит в разложение числа b и наоборот. Поэтому любой простой множитель входит в разложение числа а или b в отдельности только в четной степени, а, значит, сами эти числа являются квадратами целых чисел. Положим тогда получим равенства

причем натуральные параметры m>n взаимно просты (вследствие взаимной простоты чисел а и b) и имеют разную четность (из-за нечетности числа z = m 2 + n 2 ).

Пусть теперь натуральные числа m>n разной четности являются взаимно простыми. Тогда тройка х = 2mn, y = m 2 - n 2 , z = m 2 + n 2 , согласно утверждению задачи 7.2, является пифагоровой. Докажем, что она несократима. Для этого достаточно проверить, что числа y и z не имеют общих делителей (см. задачу 7.3). В самом деле, оба эти числа нечетны, так как числа тип имеют разную четность. Если же числа y и z имеют какой-либо простой общий делитель (тогда уж обязательно нечетный), то такой же делитель имеет и каждое из чисел и а с ними и каждое из чисел m и n, что противоречит их взаимной простоте.

7.6. В силу утверждений, сформулированных в задачах 7.1, 7.2, указанные формулы задают только пифагоровы тройки. С другой стороны, любая пифагорова тройка x, y, z после ее сокращения на наибольший общий делитель k пары чисел x и y становится несократимой (см. задачу 7.3) и, следовательно, может быть представлена с точностью до порядка чисел x и y в виде, описанном в задаче 7.5. Поэтому любая пифагорова тройка задается указанными формулами при некоторых значениях параметров.

7.7. Из неравенства z и формул задачи 7.6 получаем оценку m 2 т. е. m≤5 . Полагая m = 2, n = 1 и k = 1, 2, 3, 4, 5, получаем тройки 3, 4, 5; 6, 8, 10; 9, 12, 15; 12,16,20; 15, 20, 25. Полагая m = 3, n = 2 и k = 1, 2, получаем тройки 5, 12, 13; 10, 24, 26. Полагая m = 4, n = 1, 3 и k = 1, получаем тройки 8, 15, 17; 7, 24, 25. Наконец, полагая m = 5, n = 2 и k = 1, получаем тройку 20, 21, 29.

Свойства

Поскольку уравнение x 2 + y 2 = z 2 однородно , при домножении x , y и z на одно и то же число получится другая пифагорова тройка. Пифагорова тройка называется примитивной , если она не может быть получена таким способом, то есть - взаимно простые числа .

Примеры

Некоторые пифагоровы тройки (отсортированы по возрастанию максимального числа, выделены примитивные):

(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (14, 48, 50), (30, 40, 50)…

История

Пифагоровы тройки известны очень давно. В архитектуре древнемесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н. э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей.

X Всероссийский симпозиум по прикладной и промышленной математике. Санкт - Петербург, 19 мая 2009г.

Доклад: Алгоритм решения Диофантовых уравнений.

В работе рассмотрен метод исследования Диофантовых уравнений и представлены решенные этим методом: - великая теорема Ферма; - поиск Пифагоровых троек и тд. http://referats.protoplex.ru/referats_show/6954.html

Ссылки

  • Е. А. Горин Степени простых чисел в составе пифагоровых троек // Математическое просвещение . - 2008. - В. 12. - С. 105-125.

Wikimedia Foundation . 2010 .

Смотреть что такое "Пифагоровы тройки" в других словарях:

    В математике пифагоровыми числами (пифагоровой тройкой) называется кортеж из трёх целых чисел удовлетворяющих соотношению Пифагора: x2 + y2 = z2. Содержание 1 Свойства … Википедия

    Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Большой Энциклопедический словарь

    Тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным. По теореме, обратной теореме Пифагора (см. Пифагора теорема), для этого достаточно, чтобы они… … Большая советская энциклопедия

    Тройки целых положительных чисел х, у,z, удовлетворяющих уравнению x2+у 2=z2. Все решения этого уравнения, а следовательно, и все П. ч. выражаются формулами х=а 2 b2, y=2ab, z=a2+b2, где а, b произвольные целые положительные числа (а>b). П. ч … Математическая энциклопедия

    Тройки таких натуральных чисел, что треугольник, длины сторон к рого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Естествознание. Энциклопедический словарь

    Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, например тройка чисел: 3, 4, 5. * * * ПИФАГОРОВЫ ЧИСЛА ПИФАГОРОВЫ ЧИСЛА, тройки таких натуральных чисел, что… … Энциклопедический словарь

    В математике пифагоровой тройкой называется кортеж из трёх натуральных чисел удовлетворяющих соотношению Пифагора: При этом числа, образующие пифагорову тройку, называются пифагоровыми числами. Содержание 1 Примитивные тройки … Википедия

    Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия

    Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия

    Это уравнение вида где P целочисленная функция (например, полином с целыми коэффициентами), а переменные принимают целые значения. Названы в честь древнегреческого математика Диофанта. Содержание 1 Примеры … Википедия

Обучающая : изучить ряд пифагоровых троек, разработать алгоритм их применения в различных ситуациях, составить памятку по их использованию.
  • Воспитательная : формирование сознательного отношения к учебе, развитие познавательной активности, культуры учебного труда.
  • Развивающая : развитие геометрической, алгебраической и числовой интуиции, сообразительности, наблюдательности, памяти.
  • Ход урока

    I. Организационный момент

    II. Объяснение нового материала

    Учитель: Загадка притягательной силы пифагоровых троек давно волнует человечество. Уникальные свойства пифагоровых троек объясняют их особую роль в природе, музыке, математике. Пифагорово заклинание, теорема Пифагора, остается в мозге миллионов, если не миллиардов, людей. Это – фундаментальная теорема, заучивать которую, заставляют каждого школьника. Несмотря на то, что теорема Пифагора доступна пониманию десятилетних, она является вдохновляющим началом проблемы, при решении которой потерпели фиаско величайшие умы в истории математики, теорема Ферма. Пифагор с острова Самос (см. Приложение 1 , слайд 4 )был одной из наиболее влиятельных и тем не менее загадочных фигур в математике. Поскольку достоверных сообщений о его жизни и работе не сохранилось, его жизнь оказалась окутанной мифами и легендами, и историкам бывает трудно отделить факты от вымысла. Не подлежит сомнению, однако, что Пифагор развил идею о логике чисел и что именно ему мы обязаны первым золотым веком математики. Благодаря его гению, числа перестали использоваться только для счета и вычислений и были впервые оценены по достоинству. Пифагор изучал свойства определенных классов чисел, соотношения между ними и фигуры, которые образуют числа. Пифагор понял, что числа существуют независимо от материального мира, и поэтому на изучении чисел не сказывается неточность наших органов чувств. Это означало, что Пифагор обрел возможность открывать истины, независимые от чьего-либо мнения или предрассудка. Истины более абсолютные, чем любое предыдущее знание. На основе изученной литературы, касающейся пифагоровых троек, нас будет интересовать возможность применения пифагоровых троек при решении задач тригонометрии. Поэтому мы поставим перед собой цель: изучить ряд пифагоровых троек, разработать алгоритм их применения, составить памятку по их использованию, провести исследование по их применению в различных ситуациях.

    Треугольник (слайд 14 ), стороны которого равны пифагоровым числам, является прямоугольным. Кроме того, любой такой треугольник является героновым, т.е. таким, у которого все стороны и площадь являются целочисленными. Простейший из них – египетский треугольник со сторонами (3, 4, 5).

    Составим ряд пифагоровых троек путем домножения чисел (3, 4, 5) на 2, на 3, на 4. Получим ряд пифагоровых троек, отсортируем их по возрастанию максимального числа, выделим примитивные.

    (3, 4, 5), (6, 8, 10), (5, 12, 13) , (9, 12, 13), (8, 15, 17) , (12, 16, 20), (15, 20, 25), (7, 24, 25) , (10, 24, 26), (20, 21, 29) , (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41) , (14, 48, 50), (30, 40, 50).

    III. Ход урока

    1. Покрутимся вокруг задач:

    1) Используя соотношения между тригонометрическими функциями одного и того же аргумента найдите, если

    известно, что .

    2) Найдите значение тригонометрических функций угла?, если известно, что:

    3) Система тренировочных задач по теме “Формулы сложения”

    зная, что sin = 8/17, cos = 4/5, и – углы первой четверти, найдите значение выражения:

    зная, что и – углы второй четверти, sin = 4/5, cos = – 15/17, найдите: .

    4) Система тренировочных задач по теме “Формулы двойного угла”

    a) Пусть sin = 5/13, – угол второй четверти. Найдите sin2, cos2, tg2, ctg2.

    b) Известно, что tg? = 3/4, – угол третьей четверти. Найдите sin2, cos2, tg2, ctg2.

    c) Известно, что , 0 < < . Найдите sin, cos, tg, ctg.

    d) Известно, что , < < 2. Найдите sin, cos, tg.

    e) Найдите tg( + ), если известно что cos = 3/5, cos = 7/25, где и – углы первой четверти.

    f) Найдите , – угол третьей четверти.

    Решаем задачу традиционным способом с использованием основных тригонометрических тождеств, а затем решаем эти же задачи более рациональным способом. Для этого используем алгоритм решения задач с использованием пифагоровых троек. Составляем памятку решения задач с использованием пифагоровых троек. Для этого вспоминаем определение синуса, косинуса, тангенса и котангенса, острого угла прямоугольного треугольника, изображаем его, в зависимости от условий задачи на сторонах прямоугольного треугольника правильно расставляем пифагоровы тройки (рис. 1 ). Записываем соотношение и расставляем знаки. Алгоритм выработан.

    Рисунок 1

    Алгоритм решения задач

    Повторить (изучить) теоретический материал.

    Знать наизусть примитивные пифагоровы тройки и при необходимости уметь конструировать новые.

    Применять теорему Пифагора для точек с рациональными координатами.

    Знать определение синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника, уметь изобразить прямоугольный треугольник и в зависимости от условия задачи правильно расставить пифагоровы тройки на сторонах треугольника.

    Знать знаки синуса, косинуса, тангенса и котангенса в зависимости от их расположения в координатной плоскости.

    Необходимые требования:

    1. знать, какие знаки синус, косинус, тангенс, котангенс имеют в каждой из четвертей координатной плоскости;
    2. знать определение синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника;
    3. знать и уметь применять теорему Пифагора;
    4. знать основные тригонометрические тождества, формулы сложения, формулы двойного угла, формулы половинного аргумента;
    5. знать формулы приведения.

    С учетом вышеизложенного заполним таблицу (таблица 1 ). Ее нужно заполнять, следуя определению синуса, косинуса, тангенса и котангенса или с использованием теоремы Пифагора для точек с рациональными координатами. При этом постоянно необходимо помнить знаки синуса, косинуса, тангенса и котангенса в зависимости от их расположения в координатной плоскости.

    Таблица 1

    Тройки чисел sin cos tg ctg
    (3, 4, 5) I ч.
    (6, 8, 10) II ч. - -
    (5, 12, 13) III ч. - -
    (8, 15, 17) IV ч. - - -
    (9, 40, 41) I ч.

    Для успешной работы можно воспользоваться памяткой применения пифагоровых троек.

    Таблица 2

    (3, 4, 5), (6, 8, 10), (5, 12, 13) , (9, 12, 13), (8, 15, 17) , (12, 16, 20), (15, 20, 25), (7, 24, 25) , (10, 24, 26), (20, 21, 29) , (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41) , (14, 48, 50), (30, 40, 50), …

    2. Решаем вместе .

    1) Задача: найдите cos, tg и ctg, если sin = 5/13, если – угол второй четверти.